On combining variable ordering heuristics for constraint satisfaction problems

被引:3
|
作者
Li, Hongbo [1 ]
Feng, Guozhong [1 ]
Yin, Minghao [1 ]
机构
[1] Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Peoples R China
基金
中国国家自然科学基金;
关键词
Constraint satisfaction problem; Variable ordering heuristic; Activity-based search; Dom; wdeg; Impact-based search;
D O I
10.1007/s10732-019-09434-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variable ordering heuristics play a central role in solving constraint satisfaction problems. Combining two variable ordering heuristics may generate a more efficient heuristic, such as dom/deg. In this paper, we propose a novel method for combining two variable ordering heuristics, namely Pearson-Correlation-Coefficient-based Combination (PCCC). While the existing combination strategies always combine participant heuristics, PCCC checks whether the participant heuristics are suitable for combination before combining them in the context of search. If they should be combined, it combines the heuristic scores to select a variable to branch on, otherwise, it randomly selects one of the participant heuristics to make the decision. The experiments on various benchmark problems show that PCCC can be used to combine different pairs of heuristics, and it is more robust than the participant heuristics and some classical combining strategies.
引用
收藏
页码:453 / 474
页数:22
相关论文
共 50 条
  • [11] Variable and value ordering heuristics for the job shop scheduling constraint satisfaction problem
    Sadeh, N
    Fox, MS
    ARTIFICIAL INTELLIGENCE, 1996, 86 (01) : 1 - 41
  • [12] Learning vector quantization for variable ordering in constraint satisfaction problems
    Carlos Ortiz-Bayliss, Jose
    Terashima-Marin, Hugo
    Enrique Conant-Pablos, Santiago
    PATTERN RECOGNITION LETTERS, 2013, 34 (04) : 423 - 432
  • [13] Comparative analysis of variable ordering heuristics for job-shop constraint satisfaction problem
    Yin, Jing
    Li, Tieke
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 1420 - 1424
  • [14] Exploring the Impact of Early Decisions in Variable Ordering for Constraint Satisfaction Problems
    Carlos Ortiz-Bayliss, Jose
    Amaya, Ivan
    Enrique Conant-Pablos, Santiago
    Terashima-Marin, Hugo
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2018, 2018
  • [15] Automatic Generation of Heuristics for Constraint Satisfaction Problems
    Ortiz-Bayliss, Jose Carlos
    Humberto Moreno-Scott, Jorge
    Terashima-Marin, Hugo
    NATURE INSPIRED COOPERATIVE STRATEGIES FOR OPTIMIZATION (NICSO 2013), 2014, 512 : 315 - +
  • [16] Grammar-based generation of variable-selection heuristics for constraint satisfaction problems
    Alejandro Sosa-Ascencio
    Gabriela Ochoa
    Hugo Terashima-Marin
    Santiago Enrique Conant-Pablos
    Genetic Programming and Evolvable Machines, 2016, 17 : 119 - 144
  • [17] Grammar-based generation of variable-selection heuristics for constraint satisfaction problems
    Sosa-Ascencio, Alejandro
    Ochoa, Gabriela
    Terashima-Marin, Hugo
    Enrique Conant-Pablos, Santiago
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2016, 17 (02) : 119 - 144
  • [18] Effects of Dynamic Variable - Value Ordering Heuristics on the Search Space of Sudoku Modeled as a Constraint Satisfaction Problem
    Cox, James L.
    Lucci, Stephen
    Pay, Tayfun
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2019, 22 (63): : 1 - 15
  • [19] Heuristics for dynamically adapting propagation in constraint satisfaction problems
    Stergiou, Kostas
    AI COMMUNICATIONS, 2009, 22 (03) : 125 - 141
  • [20] Challenging Heuristics: Evolving Binary Constraint Satisfaction Problems
    Moreno-Scott, Jorge H.
    Carlos Ortis-Bayliss, Jose
    Terashima-Marin, Hugo
    Enrique Conant-Pablos, Santiago
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2012, : 409 - 416