On combining variable ordering heuristics for constraint satisfaction problems

被引:3
|
作者
Li, Hongbo [1 ]
Feng, Guozhong [1 ]
Yin, Minghao [1 ]
机构
[1] Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Peoples R China
基金
中国国家自然科学基金;
关键词
Constraint satisfaction problem; Variable ordering heuristic; Activity-based search; Dom; wdeg; Impact-based search;
D O I
10.1007/s10732-019-09434-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variable ordering heuristics play a central role in solving constraint satisfaction problems. Combining two variable ordering heuristics may generate a more efficient heuristic, such as dom/deg. In this paper, we propose a novel method for combining two variable ordering heuristics, namely Pearson-Correlation-Coefficient-based Combination (PCCC). While the existing combination strategies always combine participant heuristics, PCCC checks whether the participant heuristics are suitable for combination before combining them in the context of search. If they should be combined, it combines the heuristic scores to select a variable to branch on, otherwise, it randomly selects one of the participant heuristics to make the decision. The experiments on various benchmark problems show that PCCC can be used to combine different pairs of heuristics, and it is more robust than the participant heuristics and some classical combining strategies.
引用
收藏
页码:453 / 474
页数:22
相关论文
共 50 条
  • [21] Experimental Matching of Instances to Heuristics for Constraint Satisfaction Problems
    Humberto Moreno-Scott, Jorge
    Carlos Ortiz-Bayliss, Jose
    Terashima-Marin, Hugo
    Enrique Conant-Pablos, Santiago
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
  • [22] Combining variable ordering heuristics for improving search algorithms performance
    Hatamlou, Abdolreza
    Farhang, Yusef
    Meybodi, Mohammad Reza
    World Academy of Science, Engineering and Technology, 2009, 38 : 993 - 995
  • [23] A non-binary constraint ordering heuristic for constraint satisfaction problems
    Salido, Miguel A.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (01) : 280 - 295
  • [24] NETWORK-BASED HEURISTICS FOR CONSTRAINT-SATISFACTION PROBLEMS
    DECHTER, R
    PEARL, J
    ARTIFICIAL INTELLIGENCE, 1987, 34 (01) : 1 - 38
  • [25] Dynamic agent ordering in distributed constraint satisfaction problems
    Zhou, LZ
    Thornton, J
    Sattar, A
    AI 2003: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2003, 2903 : 427 - 439
  • [26] Declarative Heuristics in Constraint Satisfaction
    Teppan, Erich Christian
    Friedrich, Gerhard
    2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2013, : 996 - 1003
  • [27] Counting-Based Search: Branching Heuristics for Constraint Satisfaction Problems
    Pesant, Gilles
    Quimper, Claude-Guy
    Zanarini, Alessandro
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2012, 43 : 173 - 210
  • [28] Matrix Factorization Based Heuristics Learning for Solving Constraint Satisfaction Problems
    Erdeniz, Seda Polat
    Samer, Ralph
    Atas, Muesluem
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2020), 2020, 12117 : 287 - 297
  • [29] Ant Population Meta-Heuristics for Binary Constraint Satisfaction Problems
    Mizuno, Kazunori
    Nagasawa, Yoshitaka
    Sasaki, Hitoshi
    Nishihara, Seiichi
    INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2010), 2010, : 314 - 321
  • [30] Lifelong Learning Selection Hyper-heuristics for Constraint Satisfaction Problems
    Carlos Ortiz-Bayliss, Jose
    Terashima-Marin, Hugo
    Enrique Conant-Pablos, Santiago
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, MICAI 2015, PT I, 2015, 9413 : 190 - 201