On combining variable ordering heuristics for constraint satisfaction problems

被引:3
|
作者
Li, Hongbo [1 ]
Feng, Guozhong [1 ]
Yin, Minghao [1 ]
机构
[1] Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Peoples R China
基金
中国国家自然科学基金;
关键词
Constraint satisfaction problem; Variable ordering heuristic; Activity-based search; Dom; wdeg; Impact-based search;
D O I
10.1007/s10732-019-09434-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variable ordering heuristics play a central role in solving constraint satisfaction problems. Combining two variable ordering heuristics may generate a more efficient heuristic, such as dom/deg. In this paper, we propose a novel method for combining two variable ordering heuristics, namely Pearson-Correlation-Coefficient-based Combination (PCCC). While the existing combination strategies always combine participant heuristics, PCCC checks whether the participant heuristics are suitable for combination before combining them in the context of search. If they should be combined, it combines the heuristic scores to select a variable to branch on, otherwise, it randomly selects one of the participant heuristics to make the decision. The experiments on various benchmark problems show that PCCC can be used to combine different pairs of heuristics, and it is more robust than the participant heuristics and some classical combining strategies.
引用
收藏
页码:453 / 474
页数:22
相关论文
共 50 条
  • [31] Boosting search with variable elimination in constraint optimization and constraint satisfaction problems
    Larrosa, J
    Dechter, R
    CONSTRAINTS, 2003, 8 (03) : 303 - 326
  • [32] Boosting Search with Variable Elimination in Constraint Optimization and Constraint Satisfaction Problems
    Javier Larrosa
    Rina Dechter
    Constraints, 2003, 8 : 303 - 326
  • [33] Mapping the Performance of Heuristics for Constraint Satisfaction
    Carlos Ortiz-Bayliss, Jose
    Oezcan, Ender
    Parkes, Andrew J.
    Terashima-Marin, Hugo
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [34] Population migration: A meta-heuristics for stochastic approaches to constraint satisfaction problems
    Mizuno, K.
    Nishihara, S.
    Kanoh, H.
    Kishi, I.
    Informatica (Ljubljana), 2001, 25 (03) : 421 - 429
  • [35] The dynamics of dynamic variable ordering heuristics
    Prosser, P
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP98, 1998, 1520 : 17 - 23
  • [36] Variable ordering heuristics show promise
    Beck, JC
    Prosser, P
    Wallace, RJ
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP 2004, PROCEEDINGS, 2004, 3258 : 711 - 715
  • [37] Conflict Directed Variable Selection Strategies for Constraint Satisfaction Problems
    Balafoutis, Thanasis
    Stergion, Kostas
    ARTIFICIAL INTELLIGENCE: THEORIES, MODELS AND APPLICATIONS, PROCEEDINGS, 2010, 6040 : 29 - 38
  • [38] SPARSIFICATION OF TWO-VARIABLE VALUED CONSTRAINT SATISFACTION PROBLEMS
    Filtser, Arnold
    Krauthgamer, Robert
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (02) : 1263 - 1276
  • [39] A Variable Depth Search Algorithm for Binary Constraint Satisfaction Problems
    Bouhmala, N.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [40] Machine learned heuristics to improve constraint satisfaction
    Correia, M
    Barahona, P
    ADVANCES IN ARTIFICIAL INTELLIGENCE - SBIA 2004, 2004, 3171 : 103 - 113