On combining variable ordering heuristics for constraint satisfaction problems

被引:3
|
作者
Li, Hongbo [1 ]
Feng, Guozhong [1 ]
Yin, Minghao [1 ]
机构
[1] Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Peoples R China
基金
中国国家自然科学基金;
关键词
Constraint satisfaction problem; Variable ordering heuristic; Activity-based search; Dom; wdeg; Impact-based search;
D O I
10.1007/s10732-019-09434-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variable ordering heuristics play a central role in solving constraint satisfaction problems. Combining two variable ordering heuristics may generate a more efficient heuristic, such as dom/deg. In this paper, we propose a novel method for combining two variable ordering heuristics, namely Pearson-Correlation-Coefficient-based Combination (PCCC). While the existing combination strategies always combine participant heuristics, PCCC checks whether the participant heuristics are suitable for combination before combining them in the context of search. If they should be combined, it combines the heuristic scores to select a variable to branch on, otherwise, it randomly selects one of the participant heuristics to make the decision. The experiments on various benchmark problems show that PCCC can be used to combine different pairs of heuristics, and it is more robust than the participant heuristics and some classical combining strategies.
引用
收藏
页码:453 / 474
页数:22
相关论文
共 50 条
  • [1] On combining variable ordering heuristics for constraint satisfaction problems
    Hongbo Li
    Guozhong Feng
    Minghao Yin
    Journal of Heuristics, 2020, 26 : 453 - 474
  • [2] A Novel Strategy of Combining Variable Ordering Heuristics for Constraint Satisfaction Problems
    Li, Hongbo
    Li, Zhanshan
    IEEE ACCESS, 2018, 6 : 42750 - 42756
  • [3] Learning variable ordering heuristics for solving Constraint Satisfaction Problems
    Song, Wen
    Cao, Zhiguang
    Zhang, Jie
    Xu, Chi
    Lim, Andrew
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 109
  • [4] Branching Schemes and Variable Ordering Heuristics for Constraint Satisfaction Problems: Is There Something to Learn?
    Ortiz-Bayliss, Jose Carlos
    Terashima-Marin, Hugo
    Enrique Conant-Pablos, Santiago
    NATURE INSPIRED COOPERATIVE STRATEGIES FOR OPTIMIZATION (NICSO 2013), 2014, 512 : 329 - +
  • [5] Improving degree-based variable ordering heuristics for solving constraint satisfaction problems
    Li, Hongbo
    Liang, Yanchun
    Zhang, Ning
    Guo, Jinsong
    Xu, Dong
    Li, Zhanshan
    JOURNAL OF HEURISTICS, 2016, 22 (02) : 125 - 145
  • [6] Improving degree-based variable ordering heuristics for solving constraint satisfaction problems
    Hongbo Li
    Yanchun Liang
    Ning Zhang
    Jinsong Guo
    Dong Xu
    Zhanshan Li
    Journal of Heuristics, 2016, 22 : 125 - 145
  • [7] Using Hyper-heuristics for the Dynamic Variable Ordering in Binary Constraint Satisfaction Problems
    Terashima-Marin, Hugo
    Ortiz-Bayliss, Jose C.
    Ross, Peter
    Valenzuela-Rendon, Manuel
    MICAI 2008: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, 5317 : 407 - +
  • [8] Constraint and Variable Ordering Heuristics for Compiling Configuration Problems
    Narodytska, Nina
    Walsh, Toby
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 149 - 154
  • [9] Online learning of variable ordering heuristics for constraint optimisation problems
    Doolaard, Floris
    Yorke-Smith, Neil
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2022,