Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances

被引:83
|
作者
de Carvalho, Francisco de A. T. [1 ]
Tenorio, Camilo P. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, BR-50740540 Recife, PE, Brazil
关键词
Fuzzy statistics and data analysis; Symbolic data analysis; Fuzzy clustering; Interval-valued data; Adaptive quadratic distances; Fuzzy cluster interpretation indexes;
D O I
10.1016/j.fss.2010.08.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents partitioning fuzzy K-means clustering models for interval-valued data based on suitable adaptive quadratic distances. These models furnish a fuzzy partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fit between the fuzzy clusters and their representatives. These adaptive quadratic distances change at each algorithm iteration and can be either the same for all clusters or different from one cluster to another. Moreover, additional interpretation tools for individual fuzzy clusters of interval-valued data, suitable to these fuzzy clustering models, are also presented. Experiments with some interval-valued data sets demonstrate the usefulness of these fuzzy clustering models and the merit of the individual fuzzy cluster interpretation tools. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2978 / 2999
页数:22
相关论文
共 50 条
  • [1] Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances
    de Carvalho, Francisco de A. T.
    Lechevallier, Yves
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2009, 39 (06): : 1295 - 1306
  • [2] Partitioning fuzzy clustering algorithms for interval-valued data based on Hausdorff distances
    de Carvalho, Francisco de A. T.
    Pimentel, Julio T.
    [J]. PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1379 - 1384
  • [3] Interval-Valued Centroids in K-Means Algorithms
    Nordin, Benjamine
    Hu, Chenyi
    Chen, Bernard
    Sheng, Victor S.
    [J]. 2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, 2012, : 478 - 481
  • [4] Partitioning fuzzy c-means clustering algorithms for interval-valued data based on city-block distances
    de Carvalho, Francisco de A. T.
    Barbosa, Gibson B. N.
    Pimentel, Julio T.
    [J]. 2013 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2013, : 113 - 118
  • [5] A robust fuzzy k-means clustering model for interval valued data
    D'Urso, Pierpaolo
    Giordani, Paolo
    [J]. COMPUTATIONAL STATISTICS, 2006, 21 (02) : 251 - 269
  • [6] A robust fuzzy k-means clustering model for interval valued data
    Pierpaolo D’Urso
    Paolo Giordani
    [J]. Computational Statistics, 2006, 21 : 251 - 269
  • [7] Clustering of interval-valued data using adaptive squared Euclidean distances
    de Souza, RMCR
    de Carvalho, RDT
    Silva, FCD
    [J]. NEURAL INFORMATION PROCESSING, 2004, 3316 : 775 - 780
  • [8] Fuzzy clustering of interval-valued data with City-Block and Hausdorff distances
    de Carvalho, Francisco de A. T.
    Simoes, Eduardo C.
    [J]. NEUROCOMPUTING, 2017, 266 : 659 - 673
  • [9] Clustering interval-valued data with adaptive Euclidean and City-Block distances
    Rizo Rodriguez, Sara Ines
    Tenorio de Carvalho, Francisco de Assis
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 198
  • [10] Clustering regression based on interval-valued fuzzy outputs and interval-valued fuzzy parameters
    Arefi, Mohsen
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (03) : 1339 - 1351