Partitioning fuzzy c-means clustering algorithms for interval-valued data based on city-block distances

被引:4
|
作者
de Carvalho, Francisco de A. T. [1 ]
Barbosa, Gibson B. N. [1 ]
Pimentel, Julio T. [2 ]
机构
[1] Univ Fed Pernambuco UFPE, Ctr Informat CIn, Av Jornalista Anibal Fernandes S-N, BR-50740560 Recife, PE, Brazil
[2] Univ Fed Pernambuco UFPE, Dept Engenharia Mecanica, BR-50740560 Recife, PE, Brazil
关键词
fuzzy c-means; interval-valued data; city-block distances;
D O I
10.1109/BRACIS.2013.27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents partitioning fuzzy c-means clustering algorithms for interval-valued data based on city-block distaces. These fuzzy c-means clustering algorithms give a fuzzy partition and a prototype for each fuzzy cluster by optimizing an adequacy criterion based on suitable adaptive and non-adaptive city-block distances between vectors of intervals. The adaptive city-block distances change at each algorithm iteration and are different from one fuzzy cluster to another. Experiments with real interval-valued data sets show the usefulness of these fuzzy clustering algorithms.
引用
收藏
页码:113 / 118
页数:6
相关论文
共 50 条
  • [1] Fuzzy clustering of interval-valued data with City-Block and Hausdorff distances
    de Carvalho, Francisco de A. T.
    Simoes, Eduardo C.
    [J]. NEUROCOMPUTING, 2017, 266 : 659 - 673
  • [2] Clustering interval-valued data with adaptive Euclidean and City-Block distances
    Rizo Rodriguez, Sara Ines
    Tenorio de Carvalho, Francisco de Assis
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 198
  • [3] Partitioning fuzzy clustering algorithms for interval-valued data based on Hausdorff distances
    de Carvalho, Francisco de A. T.
    Pimentel, Julio T.
    [J]. PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1379 - 1384
  • [4] Clustering of interval data based on city-block distances
    de Souza, RMCR
    de Carvalho, FDT
    [J]. PATTERN RECOGNITION LETTERS, 2004, 25 (03) : 353 - 365
  • [5] Interval-Valued Fuzzy c-Means Algorithm and Interval-Valued Density-Based Fuzzy c-Means Algorithm
    Varshney, Ayush K.
    Mehra, Priyanka
    Muhuri, Pranab K.
    Lohani, Q. M. Danish
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [6] Interval-valued possibilistic fuzzy C-means clustering algorithm
    Ji, Zexuan
    Xia, Yong
    Sun, Quansen
    Cao, Guo
    [J]. FUZZY SETS AND SYSTEMS, 2014, 253 : 138 - 156
  • [7] Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances
    de Carvalho, Francisco de A. T.
    Tenorio, Camilo P.
    [J]. FUZZY SETS AND SYSTEMS, 2010, 161 (23) : 2978 - 2999
  • [8] Towards hybrid clustering approach to data classification: Multiple kernels based interval-valued Fuzzy C-Means algorithms
    Dzung Dinh Nguyen
    Long Thanh Ngo
    Long The Pham
    Pedrycz, Witold
    [J]. FUZZY SETS AND SYSTEMS, 2015, 279 : 17 - 39
  • [9] INCM: neutrosophic c-means clustering algorithm for interval-valued data
    Qiu, Haoye
    Liu, Zhe
    Letchmunan, Sukumar
    [J]. GRANULAR COMPUTING, 2024, 9 (02)
  • [10] INCM: neutrosophic c-means clustering algorithm for interval-valued data
    Haoye Qiu
    Zhe Liu
    Sukumar Letchmunan
    [J]. Granular Computing, 2024, 9