Partitioning fuzzy c-means clustering algorithms for interval-valued data based on city-block distances

被引:4
|
作者
de Carvalho, Francisco de A. T. [1 ]
Barbosa, Gibson B. N. [1 ]
Pimentel, Julio T. [2 ]
机构
[1] Univ Fed Pernambuco UFPE, Ctr Informat CIn, Av Jornalista Anibal Fernandes S-N, BR-50740560 Recife, PE, Brazil
[2] Univ Fed Pernambuco UFPE, Dept Engenharia Mecanica, BR-50740560 Recife, PE, Brazil
关键词
fuzzy c-means; interval-valued data; city-block distances;
D O I
10.1109/BRACIS.2013.27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents partitioning fuzzy c-means clustering algorithms for interval-valued data based on city-block distaces. These fuzzy c-means clustering algorithms give a fuzzy partition and a prototype for each fuzzy cluster by optimizing an adequacy criterion based on suitable adaptive and non-adaptive city-block distances between vectors of intervals. The adaptive city-block distances change at each algorithm iteration and are different from one fuzzy cluster to another. Experiments with real interval-valued data sets show the usefulness of these fuzzy clustering algorithms.
引用
收藏
页码:113 / 118
页数:6
相关论文
共 50 条
  • [41] Intuitionistic fuzzy C-means clustering algorithms
    Zeshui Xu1
    2.Institute of Sciences
    3.Department of Information Systems
    [J]. Journal of Systems Engineering and Electronics, 2010, 21 (04) : 580 - 590
  • [42] Intuitionistic fuzzy C-means clustering algorithms
    Xu, Zeshui
    Wu, Junjie
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2010, 21 (04) : 580 - 590
  • [43] Interval Fuzzy C-means Approach for Incomplete Data Clustering Based on Neural Networks
    Zhang, Li
    Pan, Hui
    Wang, Beilei
    Zhang, Liyong
    Fu, Zhangjie
    [J]. JOURNAL OF INTERNET TECHNOLOGY, 2018, 19 (04): : 1089 - 1098
  • [44] Evaluation Algorithms Based on Fuzzy C-means for the Data Clustering of Cancer Gene Expression
    Al-Janabee, Omar
    Al-Sarray, Basad
    [J]. Iraqi Journal for Computer Science and Mathematics, 2022, 3 (02): : 27 - 41
  • [45] Clustering of interval-valued data using adaptive squared Euclidean distances
    de Souza, RMCR
    de Carvalho, RDT
    Silva, FCD
    [J]. NEURAL INFORMATION PROCESSING, 2004, 3316 : 775 - 780
  • [46] Width-Based Interval-Valued Distances and Fuzzy Entropies
    Takac, Zdenko
    Bustince, Humberto
    Maria Pintor, Jesus
    Marco-Detchart, Cedric
    Couso, Ines
    [J]. IEEE ACCESS, 2019, 7 : 14044 - 14057
  • [47] Weighted principal component analysis for interval-valued data based on fuzzy clustering
    Sato-Ilic, M
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 4476 - 4482
  • [48] A fuzzy clustering algorithm for interval-valued data based on Gauss distribution functions
    Lü, Ze-Hua
    Jin, Hai
    Yuan, Ping-Peng
    Zou, De-Qing
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (02): : 295 - 300
  • [49] Interval-valued examples learning based on fuzzy C-mean clustering
    Chen, Ming-Zhi
    Chen, Guo-Long
    Chen, Shui-Li
    [J]. PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 1153 - +
  • [50] A fuzzy clustering model of data and fuzzy c-means
    Nascimento, S
    Mirkin, B
    Moura-Pires, F
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 302 - 307