Weighted principal component analysis for interval-valued data based on fuzzy clustering

被引:0
|
作者
Sato-Ilic, M [1 ]
机构
[1] Univ Tsukuba, Inst Policy & Planning Sci, Tsukuba, Ibaraki 305, Japan
关键词
uncertainty; risk; symbolic data analysis; PCA;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a weighted principal component analysis (WPCA) for interval-valued data using the result of fuzzy clustering. In this method, we introduce two data structures which are classification structure and principal component structure. One of them is used for weights and the other is used for the analysis of itself. So, we can reduce the risk of a wrong assumption of the introduced data structure, comparing the conventional method which assumes only one data structure on the observation.
引用
收藏
页码:4476 / 4482
页数:7
相关论文
共 50 条
  • [1] Fuzzy clustering based weighted principal component analysis for interval-valued data considering uniqueness of clusters
    Sato-Ilic, M
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 2297 - 2302
  • [2] On principal component analysis for interval-valued data
    Choi, Soojin
    Kang, Kee-Hoon
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2020, 33 (01) : 61 - 74
  • [3] On weighted principal component analysis for interval-valued data and its dynamic feature
    Sato-Ilic, Mika
    Oshima, Junya
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2006, 2 (01): : 69 - 82
  • [4] Sensor fault detection based on principal component analysis for interval-valued data
    Ait-Izem, Tarek
    Harkat, M. -Faouzi
    Djeghaba, Messaoud
    Kratz, Frederic
    [J]. QUALITY ENGINEERING, 2018, 30 (04) : 635 - 647
  • [5] Clustering regression based on interval-valued fuzzy outputs and interval-valued fuzzy parameters
    Arefi, Mohsen
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (03) : 1339 - 1351
  • [6] Trimmed fuzzy clustering for interval-valued data
    Pierpaolo D’Urso
    Livia De Giovanni
    Riccardo Massari
    [J]. Advances in Data Analysis and Classification, 2015, 9 : 21 - 40
  • [7] Fuzzy clustering of spatial interval-valued data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Federico, Lorenzo
    Vitale, Vincenzina
    [J]. SPATIAL STATISTICS, 2023, 57
  • [8] Trimmed fuzzy clustering for interval-valued data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Massari, Riccardo
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2015, 9 (01) : 21 - 40
  • [9] PRINCIPAL COMPONENT ANALYSIS FOR INTERVAL-VALUED DATA IN WATER QUALITY ASSESSMENT
    Wang, Xiaojing
    Zou, Zhihong
    [J]. FRESENIUS ENVIRONMENTAL BULLETIN, 2018, 27 (10): : 6525 - 6531
  • [10] Interval-valued fuzzy clustering
    Pagola, M.
    Jurio, A.
    Barrenechea, E.
    Fernandez, J.
    Bustince, H.
    [J]. PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 : 1288 - 1294