Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances

被引:38
|
作者
de Carvalho, Francisco de A. T. [1 ]
Lechevallier, Yves [2 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, BR-50740540 Recife, PE, Brazil
[2] Inst Natl Rech Informat & Automat Paris Rocquenco, F-78153 Le Chesnay, Paris, France
关键词
Adaptive quadratic distances; cluster interpretation indexes; clustering analysis; partition interpretation indexes; symbolic interval data analysis; SIMILARITY;
D O I
10.1109/TSMCA.2009.2030167
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents partitioning dynamic clustering methods for interval-valued data based on suitable adaptive quadratic distances. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. These adaptive quadratic distances change at each algorithm iteration and can either be the same for all clusters or different from one cluster to another. Moreover, various tools for the partition and cluster interpretation of interval-valued data are also presented. Experiments with real and synthetic interval-valued data sets show the usefulness of these adaptive clustering methods and the merit of the partition and cluster interpretation tools.
引用
收藏
页码:1295 / 1306
页数:12
相关论文
共 50 条
  • [1] Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances
    de Carvalho, Francisco de A. T.
    Tenorio, Camilo P.
    [J]. FUZZY SETS AND SYSTEMS, 2010, 161 (23) : 2978 - 2999
  • [2] Clustering of interval-valued data using adaptive squared Euclidean distances
    de Souza, RMCR
    de Carvalho, RDT
    Silva, FCD
    [J]. NEURAL INFORMATION PROCESSING, 2004, 3316 : 775 - 780
  • [3] Clustering interval-valued data with adaptive Euclidean and City-Block distances
    Rizo Rodriguez, Sara Ines
    Tenorio de Carvalho, Francisco de Assis
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 198
  • [4] Partitioning fuzzy clustering algorithms for interval-valued data based on Hausdorff distances
    de Carvalho, Francisco de A. T.
    Pimentel, Julio T.
    [J]. PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1379 - 1384
  • [5] Dynamic clustering of interval data based on adaptive Chebyshev distances
    de Souza, RMCR
    de Carvalho, E
    [J]. ELECTRONICS LETTERS, 2004, 40 (11) : 658 - 660
  • [6] Dynamic clustering with non-quadratic adaptive distances for interval-type data
    de Souza, RMCR
    de Carvalho, FDAT
    [J]. INNOVATIONS IN CLASSIFICATION, DATA SCIENCE, AND INFORMATION SYSTEMS, 2005, : 173 - 180
  • [7] Fuzzy clustering of interval-valued data with City-Block and Hausdorff distances
    de Carvalho, Francisco de A. T.
    Simoes, Eduardo C.
    [J]. NEUROCOMPUTING, 2017, 266 : 659 - 673
  • [8] Symbolic Clustering with Interval-Valued Data
    Sato-Ilic, Mika
    [J]. COMPLEX ADAPTIVE SYSTEMS, 2011, 6
  • [9] Adaptive Hausdorff distances and dynamic clustering of symbolic interval data
    de Carvalho, FDT
    de Souza, RMCR
    Chavent, M
    Lechevallier, Y
    [J]. PATTERN RECOGNITION LETTERS, 2006, 27 (03) : 167 - 179
  • [10] Two clustering methods based on the Ward's method and dendrograms with interval-valued dissimilarities for interval-valued data
    Ogasawara, Yu
    Kon, Masamichi
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 129 : 103 - 121