Interval-Valued Centroids in K-Means Algorithms

被引:4
|
作者
Nordin, Benjamine [1 ]
Hu, Chenyi [1 ]
Chen, Bernard [1 ]
Sheng, Victor S. [1 ]
机构
[1] Univ Cent Arkansas, Dept Comp Sci, Conway, AR 72035 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/ICMLA.2012.87
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The K-Means algorithms are fundamental in machine learning and data mining. In this study, we investigate interval-valued rather than commonly used point-valued centroids in the K-Means algorithm. Using a proposed interval peak method to select initial interval centroids, we have obtained overall quality improvement of clusters on a set of test problems in the Fundamental Clustering Problem Suite (FCPS).
引用
收藏
页码:478 / 481
页数:4
相关论文
共 50 条