A robust fuzzy k-means clustering model for interval valued data

被引:0
|
作者
Pierpaolo D’Urso
Paolo Giordani
机构
[1] Università degli Studi del Molise,Dipartimento di Scienze Economiche, Gestionali e Sociali
[2] Università di Roma “La Sapienza”,Dipartimento di Statistica Probabilità e Statistiche Applicate
来源
Computational Statistics | 2006年 / 21卷
关键词
Fuzzy ; -means; Robust clustering; Interval valued data; Noise center; Noise radius; Noise cluster;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper a robust fuzzy k-means clustering model for interval valued data is introduced. The peculiarity of the proposed model is the capability to manage anomalous interval valued data by reducing the effects of such outliers in the clustering model. In the interval case, the concept of anomalous data involves both the center and the width (the radius) of an interval. In order to show how our model works the results of a simulation experiment and an application to real interval valued data are discussed.
引用
收藏
页码:251 / 269
页数:18
相关论文
共 50 条
  • [1] A robust fuzzy k-means clustering model for interval valued data
    D'Urso, Pierpaolo
    Giordani, Paolo
    [J]. COMPUTATIONAL STATISTICS, 2006, 21 (02) : 251 - 269
  • [2] Robust deep fuzzy K-means clustering for image data
    Wu, Xiaoling
    Yu, Yu-Feng
    Chen, Long
    Ding, Weiping
    Wang, Yingxu
    [J]. PATTERN RECOGNITION, 2024, 153
  • [3] Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances
    de Carvalho, Francisco de A. T.
    Tenorio, Camilo P.
    [J]. FUZZY SETS AND SYSTEMS, 2010, 161 (23) : 2978 - 2999
  • [4] Class Specific Feature Selection for Interval Valued Data Through Interval K-Means Clustering
    Guru, D. S.
    Kumar, N. Vinay
    [J]. RECENT TRENDS IN IMAGE PROCESSING AND PATTERN RECOGNITION (RTIP2R 2016), 2017, 709 : 228 - 239
  • [5] Hybrid Clustering: Combining K-Means and Interval valued data-type Hierarchical Clustering
    Galdino, Sergio Mario Lins
    da Silva, Jornandes Dias
    [J]. ACTA POLYTECHNICA HUNGARICA, 2024, 21 (09) : 175 - 186
  • [6] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163
  • [7] Soil data clustering by using K-means and fuzzy K-means algorithm
    Hot, Elma
    Popovic-Bugarin, Vesna
    [J]. 2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 890 - 893
  • [8] Private Distributed K-Means Clustering on Interval Data
    Huang, Dingquan
    Yao, Xin
    An, Senquan
    Ren, Shengbing
    [J]. 2021 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE (IPCCC), 2021,
  • [9] Robust Fuzzy K-Means Clustering With Shrunk Patterns Learning
    Zhao, Xiaowei
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (03) : 3001 - 3013
  • [10] Fuzzy PCA-Guided Robust k-Means Clustering
    Honda, Katsuhiro
    Notsu, Akira
    Ichihashi, Hidetomo
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (01) : 67 - 79