Importance sampling method of correction for multiple testing in affected sib-pair linkage analysis

被引:6
|
作者
Klein, AP
Kovac, I
Sorant, AJM
Baffoe-Bonnie, A
Doan, BQ
Ibay, G
Lockwood, E
Mandal, D
Santhosh, L
Weissbecker, K
Woo, J
Zambelli-Weiner, A
Zhang, J
Naiman, DQ
Malley, J
Bailey-Wilson, JE [1 ]
机构
[1] NHGRI, Inherited Dis Res Branch, NIH, Baltimore, MD USA
[2] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA
[3] Johns Hopkins Med Sch, CIDR, Baltimore, MD USA
[4] Louisiana State Univ, Hlth Sci Ctr, Dept Genet, New Orleans, LA USA
[5] Tulane Univ, Dept Psychiat & Neurol, New Orleans, LA 70118 USA
[6] Tulane Univ, Hayward Genet Program, New Orleans, LA 70118 USA
[7] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD USA
[8] Johns Hopkins Univ, Dept Math Sci, Baltimore, MD 21218 USA
[9] NIH, Ctr Informat Technol, Bethesda, MD 20892 USA
关键词
D O I
10.1186/1471-2156-4-S1-S73
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Using the Genetic Analysis Workshop 13 simulated data set, we compared the technique of importance sampling to several other methods designed to adjust p-values for multiple testing: the Bonferroni correction, the method proposed by Feingold et al., and naive Monte Carlo simulation. We performed affected sib-pair linkage analysis for each of the 100 replicates for each of five binary traits and adjusted the derived p-values using each of the correction methods. The type I error rates for each correction method and the ability of each of the methods to detect loci known to influence trait values were compared. All of the methods considered were conservative with respect to type I error, especially the Bonferroni method. The ability of these methods to detect trait loci was also low. However, this may be partially due to a limitation inherent in our binary trait definitions.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Importance sampling method of correction for multiple testing in affected sib-pair linkage analysis
    Alison P Klein
    Ilija Kovac
    Alexa JM Sorant
    Agnes Baffoe-Bonnie
    Betty Q Doan
    Grace Ibay
    Erica Lockwood
    Diptasri Mandal
    Lekshmi Santhosh
    Karen Weissbecker
    Jessica Woo
    April Zambelli-Weiner
    Jie Zhang
    Daniel Q Naiman
    James Malley
    Joan E Bailey-Wilson
    [J]. BMC Genetics, 4
  • [2] Statistical properties of affected sib-pair linkage tests
    Wu, CC
    Amos, CI
    [J]. HUMAN HEREDITY, 2003, 55 (04) : 153 - 162
  • [3] The affected sib pair method for linkage analysis
    Knapp, M
    [J]. GENETIC MAPPING OF DISEASE GENES, 1997, : 147 - 157
  • [4] A FURTHER NOTE ON THE SIB-PAIR LINKAGE METHOD
    PENROSE, LS
    [J]. ANNALS OF EUGENICS, 1946, 13 (01): : 25 - 29
  • [5] A NOVEL POLYLOCUS METHOD FOR LINKAGE ANALYSIS USING THE LOD-SCORE OR AFFECTED SIB-PAIR METHOD
    TERWILLIGER, JD
    OTT, J
    [J]. GENETIC EPIDEMIOLOGY, 1993, 10 (06) : 477 - 482
  • [6] Diagnosis as a covariate in sib-pair linkage analysis
    Rice, JP
    [J]. AMERICAN JOURNAL OF MEDICAL GENETICS, 2001, 105 (01): : 55 - 56
  • [7] PATH-ANALYSIS AND SIB-PAIR LINKAGE
    CAREY, G
    WILLIAMSON, JA
    [J]. GENETIC EPIDEMIOLOGY, 1993, 10 (02) : 103 - 112
  • [8] THE AFFECTED SIB METHOD .1. STATISTICAL FEATURES OF THE AFFECTED SIB-PAIR METHOD
    MOTRO, U
    THOMSON, G
    [J]. GENETICS, 1985, 110 (03) : 525 - 538
  • [9] A permutation test for the robust sib-pair linkage method
    Wan, Y
    Cohen, J
    Guerra, R
    [J]. ANNALS OF HUMAN GENETICS, 1997, 61 : 79 - 87
  • [10] Testing linkage and gene x environment interaction: Comparison of different affected sib-pair methods
    Dizier, MH
    Selinger-Leneman, H
    Genin, E
    [J]. GENETIC EPIDEMIOLOGY, 2003, 25 (01) : 73 - 79