Steady-state solutions to the advection-diffusion equation and ghost coordinates for a chaotic flow

被引:5
|
作者
Hudson, S. R. [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
D O I
10.1103/PhysRevE.76.046211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Steady-state solutions to the advection-diffusion equation for a passive scalar, with a chaotic divergence-free flow, are determined using a discrete-time, finite-difference model. The physical system studied is a density of particles diffusing across a chaotic layer. The impact of the advective structures on the solutions is illustrated, with special attention given to the cantori. It is argued that cantori play an important role in restricting transport and that coordinates adapted to cantori, called ghost coordinates, provide a natural framework about which the dynamics may be organized; for example, the averaged density profile becomes a smoothed devil's staircase in ghost coordinates.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] On the advection-diffusion equation with rough coefficients: Weak solutions and vanishing viscosity
    Bonicatto, Paolo
    Ciampa, Gennaro
    Crippa, Gianluca
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 167 : 204 - 224
  • [22] STEADY-STATE SOLUTIONS TO BENTSENS EQUATION
    SHEN, CH
    RUTH, DW
    TRANSPORT IN POROUS MEDIA, 1994, 16 (02) : 105 - 123
  • [23] Steady-state diffusion-advection by exponential finite elements
    Centre for Geotechnical Research, Dept. of Civil Engineering, Univ. of Sydney, Sedney, NSW 2006, Australia
    Int. J. Geomech., 2006, 6 (428-434):
  • [24] Boundary effects on chaotic advection-diffusion chemical reactions
    Chertkov, M
    Lebedev, V
    PHYSICAL REVIEW LETTERS, 2003, 90 (13)
  • [25] Boundary effects on chaotic advection-diffusion chemical reactions
    Chertkov, M.
    Lebedev, V.
    2003, American Physical Society (90)
  • [26] DOMAIN DECOMPOSITION METHOD FOR THE ADVECTION-DIFFUSION EQUATION
    CHARTON, P
    NATAF, F
    ROGIER, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (09): : 623 - 626
  • [27] A NOTE ON FINITE DIFFERENCING OF THE ADVECTION-DIFFUSION EQUATION
    CLANCY, RM
    MONTHLY WEATHER REVIEW, 1981, 109 (08) : 1807 - 1809
  • [28] A Meshfree Method for the Fractional Advection-Diffusion Equation
    Lian, Yanping
    Wagner, Gregory J.
    Liu, Wing Kam
    MESHFREE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS VIII, 2017, 115 : 53 - 66
  • [29] A bound on mixing efficiency for the advection-diffusion equation
    Thiffeault, JL
    Doering, CR
    Gibbon, JD
    JOURNAL OF FLUID MECHANICS, 2004, 521 : 105 - 114
  • [30] Near-field Atmospheric Dispersion Modeling: A New Approach for the Two-dimensional Steady-state Advection-Diffusion Equation Using Fractal Derivative
    da Silva, Jose Roberto Dantas
    Xavier, Paulo Henrique Farias
    Moreira, Davidson Martins
    PURE AND APPLIED GEOPHYSICS, 2025, 182 (01) : 223 - 233