Steady-state solutions to the advection-diffusion equation and ghost coordinates for a chaotic flow

被引:5
|
作者
Hudson, S. R. [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
D O I
10.1103/PhysRevE.76.046211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Steady-state solutions to the advection-diffusion equation for a passive scalar, with a chaotic divergence-free flow, are determined using a discrete-time, finite-difference model. The physical system studied is a density of particles diffusing across a chaotic layer. The impact of the advective structures on the solutions is illustrated, with special attention given to the cantori. It is argued that cantori play an important role in restricting transport and that coordinates adapted to cantori, called ghost coordinates, provide a natural framework about which the dynamics may be organized; for example, the averaged density profile becomes a smoothed devil's staircase in ghost coordinates.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] THE DIRICHLET PROBLEM OF A CONFORMABLE ADVECTION-DIFFUSION EQUATION
    Avci, Derya aeae
    Eroglu, Beyza Billur Iskender
    Ozdemir, Necati
    THERMAL SCIENCE, 2017, 21 (01): : 9 - 18
  • [32] ASYMPTOTIC SOLUTION OF A NONLINEAR ADVECTION-DIFFUSION EQUATION
    De Loubens, R.
    Ramakrishnan, T. S.
    QUARTERLY OF APPLIED MATHEMATICS, 2011, 69 (02) : 389 - 401
  • [33] AN INVERSE PROBLEM FOR THE STEADY-STATE DIFFUSION EQUATION
    RICHTER, GR
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 41 (02) : 210 - 221
  • [34] GENERALIZED SCHUR METHODS FOR THE ADVECTION-DIFFUSION EQUATION
    NATAF, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (05): : 419 - 422
  • [35] DOMAIN DECOMPOSITION METHOD FOR THE ADVECTION-DIFFUSION EQUATION
    CHARTON, P
    NATAF, F
    ROGIER, F
    RECHERCHE AEROSPATIALE, 1992, (04): : 73 - 78
  • [36] Climate modeling with neural advection-diffusion equation
    Choi, Hwangyong
    Choi, Jeongwhan
    Hwang, Jeehyun
    Lee, Kookjin
    Lee, Dongeun
    Park, Noseong
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (06) : 2403 - 2427
  • [37] Multiscale computation method for an advection-diffusion equation
    Su, Fang
    Xu, Zhan
    Cui, Jun-Zhi
    Du, Xin-Peng
    Jiang, Hao
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (14) : 7369 - 7374
  • [38] Scaling laws and convergence for the advection-diffusion equation
    Gaudron, G
    ANNALS OF APPLIED PROBABILITY, 1998, 8 (03): : 649 - 663
  • [39] Numerical solutions of space-fractional advection-diffusion equation with a source term
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [40] A bound on scalar variance for the advection-diffusion equation
    Plasting, SC
    Young, WR
    JOURNAL OF FLUID MECHANICS, 2006, 552 : 289 - 298