Steady-state solutions to the advection-diffusion equation and ghost coordinates for a chaotic flow

被引:5
|
作者
Hudson, S. R. [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
D O I
10.1103/PhysRevE.76.046211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Steady-state solutions to the advection-diffusion equation for a passive scalar, with a chaotic divergence-free flow, are determined using a discrete-time, finite-difference model. The physical system studied is a density of particles diffusing across a chaotic layer. The impact of the advective structures on the solutions is illustrated, with special attention given to the cantori. It is argued that cantori play an important role in restricting transport and that coordinates adapted to cantori, called ghost coordinates, provide a natural framework about which the dynamics may be organized; for example, the averaged density profile becomes a smoothed devil's staircase in ghost coordinates.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Preconditioners for multilevel Toeplitz linear systems from steady-state and evolutionary advection-diffusion equations
    Lin, Xue-lei
    Ng, Micheal K.
    Wathen, Andy
    APPLIED NUMERICAL MATHEMATICS, 2021, 161 : 469 - 488
  • [12] Stochastic solutions for the two-dimensional advection-diffusion equation
    Wang, XL
    Xiu, DB
    Karniadakis, GE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (02): : 578 - 590
  • [13] The numerical solution of the one-dimensional advection-diffusion equation in layered coordinates
    Dewar, WK
    McDougall, TJ
    MONTHLY WEATHER REVIEW, 2000, 128 (07) : 2575 - 2587
  • [14] Analytical and Numerical Solutions of Fractional Type Advection-diffusion Equation
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [15] Flow Image Velocimetry Method Based on Advection-Diffusion Equation
    Bizjan, Benjamin
    Orbanic, Alen
    Sirok, Brane
    Bajcar, Tom
    Novak, Lovrenc
    Kovac, Bostjan
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2014, 60 (7-8): : 483 - 494
  • [16] Anomalous diffusion and fractional advection-diffusion equation
    Chang, FX
    Chen, J
    Huang, W
    ACTA PHYSICA SINICA, 2005, 54 (03) : 1113 - 1117
  • [17] Advection-Diffusion Equation with Absorbing Boundary
    Grant, John
    Wilkinson, Michael
    JOURNAL OF STATISTICAL PHYSICS, 2015, 160 (03) : 622 - 635
  • [18] Numerical solution of an advection-diffusion equation
    Solución numérica de una ecuación del tipo advección-difusión
    1600, Centro de Informacion Tecnologica (25):
  • [19] DEFECT CORRECTION FOR THE ADVECTION-DIFFUSION EQUATION
    HEINRICHS, W
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 119 (3-4) : 191 - 197
  • [20] Variational quantum solutions to the advection-diffusion equation for applications in fluid dynamics
    Demirdjian, Reuben
    Gunlycke, Daniel
    Reynolds, Carolyn A.
    Doyle, James D.
    Tafur, Sergio
    QUANTUM INFORMATION PROCESSING, 2022, 21 (09)