On the advection-diffusion equation with rough coefficients: Weak solutions and vanishing viscosity

被引:9
|
作者
Bonicatto, Paolo [1 ]
Ciampa, Gennaro [2 ,3 ]
Crippa, Gianluca [4 ]
机构
[1] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7HP, England
[2] Univ Milan, Dipartimento Matemat Federigo Enr, Via Cesare Saldini 50, I-20133 Milan, Italy
[3] Basque Ctr Appl Math, BCAM, Mazarredo 14, E-48009 Bilbao, Basque, Spain
[4] Univ Basel, Dept Math Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
关键词
Transport; continuity equation; Advection-diffusion equation; Vanishing viscosity; Regular; Stochastic Lagrangian flow; Uniqueness; Anomalous dissipation; DIFFERENTIAL-EQUATIONS; RENORMALIZED SOLUTIONS; VECTOR-FIELDS; UNIQUENESS; CONTINUITY; FLOWS; BV;
D O I
10.1016/j.matpur.2022.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with the vanishing viscosity scheme for the transport/continuity equation partial differential tu +div(ub) = 0 drifted by a divergence-free vector field b. Under general Sobolev assumptions on b, we show the convergence of such scheme to the unique Lagrangian solution of the transport equation. Our proof is based on the use of stochastic flows and yields quantitative rates of convergence. This offers a completely general selection criterion for the transport equation (even beyond the distributional regime) which compensates the wild non-uniqueness phenomenon for solutions with low integrability arising from convex integration constructions, as shown in recent works [8,28-30], and rules out the possibility of anomalous dissipation.(c) 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:204 / 224
页数:21
相关论文
共 50 条
  • [1] Solutions of the advection-diffusion equation
    Tirabassi, T
    AIR POLLUTION V, 1997, : 197 - 206
  • [2] Weak and parabolic solutions of advection-diffusion equations with rough velocity field
    Bonicatto, Paolo
    Ciampa, Gennaro
    Crippa, Gianluca
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (01)
  • [3] On the anisotropic advection-diffusion equation with time dependent coefficients
    Hernandez-Coronado, H.
    Coronado, M.
    Del-Castillo-Negrete, D.
    REVISTA MEXICANA DE FISICA, 2017, 63 (01) : 40 - 48
  • [4] Analytical solutions for advection and advection-diffusion equations with spatially variable coefficients
    Zoppou, C
    Knight, JH
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1997, 123 (02): : 144 - 148
  • [5] Solutions of the atmospheric advection-diffusion equation by the laplace transformation
    Moreira, D. M.
    de Vilhena, M. T.
    Tirabassi, T.
    Bodmann, B. E. J.
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING: TECHNIQUES AND APPLICATIONS, 2008, : 171 - +
  • [6] On solutions of time-fractional advection-diffusion equation
    Attia, Nourhane
    Akgul, Ali
    Seba, Djamila
    Nour, Abdelkader
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) : 4489 - 4516
  • [7] An Eulerian-Lagrangian method of fundamental solutions for the advection-diffusion equation with time dependent coefficients
    Dalla, Carlos Eduardo Rambalducci
    da Silva, Wellington Betencurte
    Dutra, Julio Cesar Sampaio
    Colaco, Marcelo Jose
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 164
  • [8] Analytical solutions of one-dimensional advection-diffusion equation with variable coefficients in a finite domain
    Kumar, Atul
    Jaiswal, Dilip Kumar
    Kumar, Naveen
    JOURNAL OF EARTH SYSTEM SCIENCE, 2009, 118 (05) : 539 - 549
  • [9] Analytical solutions of one-dimensional advection-diffusion equation with variable coefficients in a finite domain
    Atul Kumar
    Dilip Kumar Jaiswal
    Naveen Kumar
    Journal of Earth System Science, 2009, 118 : 539 - 549
  • [10] Error estimates for a finite volume scheme for advection-diffusion equations with rough coefficients
    Navarro-Fernandez, Victor
    Schlichting, Andre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) : 2131 - 2158