On the advection-diffusion equation with rough coefficients: Weak solutions and vanishing viscosity

被引:9
|
作者
Bonicatto, Paolo [1 ]
Ciampa, Gennaro [2 ,3 ]
Crippa, Gianluca [4 ]
机构
[1] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7HP, England
[2] Univ Milan, Dipartimento Matemat Federigo Enr, Via Cesare Saldini 50, I-20133 Milan, Italy
[3] Basque Ctr Appl Math, BCAM, Mazarredo 14, E-48009 Bilbao, Basque, Spain
[4] Univ Basel, Dept Math Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
关键词
Transport; continuity equation; Advection-diffusion equation; Vanishing viscosity; Regular; Stochastic Lagrangian flow; Uniqueness; Anomalous dissipation; DIFFERENTIAL-EQUATIONS; RENORMALIZED SOLUTIONS; VECTOR-FIELDS; UNIQUENESS; CONTINUITY; FLOWS; BV;
D O I
10.1016/j.matpur.2022.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with the vanishing viscosity scheme for the transport/continuity equation partial differential tu +div(ub) = 0 drifted by a divergence-free vector field b. Under general Sobolev assumptions on b, we show the convergence of such scheme to the unique Lagrangian solution of the transport equation. Our proof is based on the use of stochastic flows and yields quantitative rates of convergence. This offers a completely general selection criterion for the transport equation (even beyond the distributional regime) which compensates the wild non-uniqueness phenomenon for solutions with low integrability arising from convex integration constructions, as shown in recent works [8,28-30], and rules out the possibility of anomalous dissipation.(c) 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:204 / 224
页数:21
相关论文
共 50 条
  • [21] Analytical solutions to one-dimensional advection-diffusion equation with variable coefficients in semi-infinite media
    Kumar, Atul
    Jaiswal, Dilip Kumar
    Kumar, Naveen
    JOURNAL OF HYDROLOGY, 2010, 380 (3-4) : 330 - 337
  • [22] ANALYTIC EXPRESSIONS OF THE SOLUTIONS OF ADVECTION-DIFFUSION PROBLEMS IN ONE DIMENSION WITH DISCONTINUOUS COEFFICIENTS
    Lejay, Antoine
    Lenotre, Lionel
    Pichot, Geraldine
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (05) : 1823 - 1849
  • [23] Weak and parabolic solutions of advection–diffusion equations with rough velocity field
    Paolo Bonicatto
    Gennaro Ciampa
    Gianluca Crippa
    Journal of Evolution Equations, 2024, 24
  • [24] A NOTE ON FINITE DIFFERENCING OF THE ADVECTION-DIFFUSION EQUATION
    CLANCY, RM
    MONTHLY WEATHER REVIEW, 1981, 109 (08) : 1807 - 1809
  • [25] DOMAIN DECOMPOSITION METHOD FOR THE ADVECTION-DIFFUSION EQUATION
    CHARTON, P
    NATAF, F
    ROGIER, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (09): : 623 - 626
  • [26] A Meshfree Method for the Fractional Advection-Diffusion Equation
    Lian, Yanping
    Wagner, Gregory J.
    Liu, Wing Kam
    MESHFREE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS VIII, 2017, 115 : 53 - 66
  • [27] A bound on mixing efficiency for the advection-diffusion equation
    Thiffeault, JL
    Doering, CR
    Gibbon, JD
    JOURNAL OF FLUID MECHANICS, 2004, 521 : 105 - 114
  • [28] THE DIRICHLET PROBLEM OF A CONFORMABLE ADVECTION-DIFFUSION EQUATION
    Avci, Derya aeae
    Eroglu, Beyza Billur Iskender
    Ozdemir, Necati
    THERMAL SCIENCE, 2017, 21 (01): : 9 - 18
  • [29] ASYMPTOTIC SOLUTION OF A NONLINEAR ADVECTION-DIFFUSION EQUATION
    De Loubens, R.
    Ramakrishnan, T. S.
    QUARTERLY OF APPLIED MATHEMATICS, 2011, 69 (02) : 389 - 401
  • [30] DOMAIN DECOMPOSITION METHOD FOR THE ADVECTION-DIFFUSION EQUATION
    CHARTON, P
    NATAF, F
    ROGIER, F
    RECHERCHE AEROSPATIALE, 1992, (04): : 73 - 78