Gromov Hyperbolicity in Mycielskian Graphs

被引:5
|
作者
Granados, Ana [1 ]
Pestana, Domingo [2 ]
Portilla, Ana [1 ]
Rodriguez, Jose M. [2 ]
机构
[1] St Louis Univ, Dept Math & Comp Sci, Ave Valle 34, Madrid 28003, Spain
[2] Univ Carlos III Madrid, Dept Math, Ave Univ 30, Leganes 28911, Spain
来源
SYMMETRY-BASEL | 2017年 / 9卷 / 08期
关键词
extremal problems on graphs; Mycielskian graphs; geodesics; Gromov hyperbolicity; SMALL-WORLD; DECOMPOSITION; METRICS;
D O I
10.3390/sym9080131
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since the characterization of Gromov hyperbolic graphs seems a too ambitious task, there are many papers studying the hyperbolicity of several classes of graphs. In this paper, it is proven that every Mycielskian graph G(M) is hyperbolic and that delta(G(M)) is comparable to diam (G(M)). Furthermore, we study the extremal problems of finding the smallest and largest hyperbolicity constants of such graphs; in fact, it is shown that 5/4 <= delta(G(M)) <= 5/2. Graphs G whose Mycielskian have hyperbolicity constant 5/4 or 5/2 are characterized. The hyperbolicity constants of the Mycielskian of path, cycle, complete and complete bipartite graphs are calculated explicitly. Finally, information on d (G) just in terms of d (GM) is obtained.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Mycielskian of signed graphs
    Mathew, Albin
    Germina, K. A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, (51): : 194 - 206
  • [32] Bounds on Gromov hyperbolicity constant
    Hernandez, Veronica
    Pestana, Domingo
    Rodriguez, Jose M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (02) : 321 - 342
  • [33] Gromov hyperbolicity of Denjoy domains
    Alvarez, Venancio
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    GEOMETRIAE DEDICATA, 2006, 121 (01) : 221 - 245
  • [35] Bounds on Gromov hyperbolicity constant
    Verónica Hernández
    Domingo Pestana
    José M. Rodríguez
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 321 - 342
  • [36] Gromov Hyperbolicity of Riemann Surfaces
    José M. Rodríguez
    Eva Tourís
    Acta Mathematica Sinica, English Series, 2007, 23 : 209 - 228
  • [37] Geometric characterizations of Gromov hyperbolicity
    Zoltán M. Balogh
    Stephen M. Buckley
    Inventiones mathematicae, 2003, 153 : 261 - 301
  • [38] Gromov hyperbolicity of Riemann surfaces
    Rodriguez, Jose M.
    Touris, Eva
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (02) : 209 - 228
  • [39] Multicoloring the Mycielskian of Graphs
    Ren, Guanfeng
    Bu, Yuehua
    2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 548 - 551
  • [40] Topological stability and Gromov hyperbolicity
    Ruggiero, RO
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 143 - 154