Gromov Hyperbolicity in Mycielskian Graphs

被引:5
|
作者
Granados, Ana [1 ]
Pestana, Domingo [2 ]
Portilla, Ana [1 ]
Rodriguez, Jose M. [2 ]
机构
[1] St Louis Univ, Dept Math & Comp Sci, Ave Valle 34, Madrid 28003, Spain
[2] Univ Carlos III Madrid, Dept Math, Ave Univ 30, Leganes 28911, Spain
来源
SYMMETRY-BASEL | 2017年 / 9卷 / 08期
关键词
extremal problems on graphs; Mycielskian graphs; geodesics; Gromov hyperbolicity; SMALL-WORLD; DECOMPOSITION; METRICS;
D O I
10.3390/sym9080131
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since the characterization of Gromov hyperbolic graphs seems a too ambitious task, there are many papers studying the hyperbolicity of several classes of graphs. In this paper, it is proven that every Mycielskian graph G(M) is hyperbolic and that delta(G(M)) is comparable to diam (G(M)). Furthermore, we study the extremal problems of finding the smallest and largest hyperbolicity constants of such graphs; in fact, it is shown that 5/4 <= delta(G(M)) <= 5/2. Graphs G whose Mycielskian have hyperbolicity constant 5/4 or 5/2 are characterized. The hyperbolicity constants of the Mycielskian of path, cycle, complete and complete bipartite graphs are calculated explicitly. Finally, information on d (G) just in terms of d (GM) is obtained.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Gromov hyperbolicity of periodic planar graphs
    Canton, Alicia
    Granados, Ana
    Pestana, Domingo
    Manuel Rodriguez, Jose
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (01) : 79 - 90
  • [22] Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces
    Touris, Eva
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) : 865 - 881
  • [23] Pseudoconvexity and Gromov hyperbolicity
    Balogh, ZM
    Bonk, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (07): : 597 - 602
  • [24] Geometric characterizations of Gromov hyperbolicity
    Balogh, ZM
    Buckley, SM
    INVENTIONES MATHEMATICAE, 2003, 153 (02) : 261 - 301
  • [25] GROMOV HYPERBOLICITY AND QUASIHYPERBOLIC GEODESICS
    Koskela, Pekka
    Lammi, Paivi
    Manojlovic, Vesna
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2014, 47 (05): : 975 - 990
  • [26] Gromov hyperbolicity of the Hilbert distance
    Fathi Haggui
    Houcine Guermazi
    Annals of Global Analysis and Geometry, 2022, 61 : 235 - 251
  • [27] Gromov hyperbolicity of Denjoy Domains
    Venancio Alvarez
    Ana Portilla
    Jose M. Rodriguez
    Eva Touris
    Geometriae Dedicata, 2006, 121 : 221 - 245
  • [28] Gromov hyperbolicity of the Hilbert distance
    Haggui, Fathi
    Guermazi, Houcine
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 61 (02) : 235 - 251
  • [29] Gromov Hyperbolicity of Riemann Surfaces
    José M.RODRíGUEZ
    EVa TOURIS
    ActaMathematicaSinica(EnglishSeries), 2007, 23 (02) : 209 - 228
  • [30] UNIFORMITY FROM GROMOV HYPERBOLICITY
    Herron, David
    Shanmugalingam, Nageswari
    Xie, Xiangdong
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (04) : 1065 - 1109