Gromov Hyperbolicity in Mycielskian Graphs

被引:5
|
作者
Granados, Ana [1 ]
Pestana, Domingo [2 ]
Portilla, Ana [1 ]
Rodriguez, Jose M. [2 ]
机构
[1] St Louis Univ, Dept Math & Comp Sci, Ave Valle 34, Madrid 28003, Spain
[2] Univ Carlos III Madrid, Dept Math, Ave Univ 30, Leganes 28911, Spain
来源
SYMMETRY-BASEL | 2017年 / 9卷 / 08期
关键词
extremal problems on graphs; Mycielskian graphs; geodesics; Gromov hyperbolicity; SMALL-WORLD; DECOMPOSITION; METRICS;
D O I
10.3390/sym9080131
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since the characterization of Gromov hyperbolic graphs seems a too ambitious task, there are many papers studying the hyperbolicity of several classes of graphs. In this paper, it is proven that every Mycielskian graph G(M) is hyperbolic and that delta(G(M)) is comparable to diam (G(M)). Furthermore, we study the extremal problems of finding the smallest and largest hyperbolicity constants of such graphs; in fact, it is shown that 5/4 <= delta(G(M)) <= 5/2. Graphs G whose Mycielskian have hyperbolicity constant 5/4 or 5/2 are characterized. The hyperbolicity constants of the Mycielskian of path, cycle, complete and complete bipartite graphs are calculated explicitly. Finally, information on d (G) just in terms of d (GM) is obtained.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Effect of Gromov-Hyperbolicity Parameter on Cuts and Expansions in Graphs and Some Algorithmic Implications
    Bhaskar Das Gupta
    Marek Karpinski
    Nasim Mobasheri
    Farzane Yahyanejad
    Algorithmica, 2018, 80 : 772 - 800
  • [42] Effect of Gromov-Hyperbolicity Parameter on Cuts and Expansions in Graphs and Some Algorithmic Implications
    Das Gupta, Bhaskar
    Karpinski, Marek
    Mobasheri, Nasim
    Yahyanejad, Farzane
    ALGORITHMICA, 2018, 80 (02) : 772 - 800
  • [43] Gromov hyperbolicity and a variation of the Gordian complex
    Ichihara, Kazuhiro
    Jong, In Dae
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2011, 87 (02) : 17 - 21
  • [44] Gromov hyperbolicity and convex tessellation graph
    Carballosa, W.
    ACTA MATHEMATICA HUNGARICA, 2017, 151 (01) : 24 - 34
  • [45] On the Gromov Hyperbolicity of Convex Domains in Cn
    Gaussier, Herve
    Seshadri, Harish
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2018, 18 (04) : 617 - 641
  • [46] Apollonian metric, uniformity and Gromov hyperbolicity
    Li, Yaxiang
    Vuorinen, Matti
    Zhou, Qingshan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (02) : 215 - 228
  • [47] Gromov hyperbolicity and convex tessellation graph
    W. Carballosa
    Acta Mathematica Hungarica, 2017, 151 : 24 - 34
  • [48] Subelliptic estimates from Gromov hyperbolicity
    Zimmer, Andrew
    ADVANCES IN MATHEMATICS, 2022, 402
  • [49] On Geodesic Convexity in Mycielskian of Graphs
    Gajavalli, S.
    Greeni, A. Berin
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (01) : 119 - 123
  • [50] Average Gromov hyperbolicity and the Parisi ansatz
    Chatterjee, Sourav
    Sloman, Leila
    ADVANCES IN MATHEMATICS, 2021, 376