Geometric characterizations of Gromov hyperbolicity

被引:0
|
作者
Zoltán M. Balogh
Stephen M. Buckley
机构
[1] Universität Bern,Departement Mathematik
[2] National University of Ireland,Department of Mathematics
来源
Inventiones mathematicae | 2003年 / 153卷
关键词
Geometric Property; Separation Condition; Geometric Characterization; Control Geometry; Gromov Hyperbolicity;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the equivalence of three different geometric properties of metric-measure spaces with controlled geometry. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is a slice condition and the third is a combination of the Gehring–Hayman property and a separation condition.
引用
收藏
页码:261 / 301
页数:40
相关论文
共 50 条
  • [1] Geometric characterizations of Gromov hyperbolicity
    Balogh, ZM
    Buckley, SM
    INVENTIONES MATHEMATICAE, 2003, 153 (02) : 261 - 301
  • [2] Geometric characterizations of Gromov hyperbolic Holder domains
    Zhou, Qingshan
    Rasila, Antti
    FORUM MATHEMATICUM, 2022, 34 (06) : 1621 - 1640
  • [3] Pseudoconvexity and Gromov hyperbolicity
    Balogh, ZM
    Bonk, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (07): : 597 - 602
  • [4] GROMOV HYPERBOLICITY AND QUASIHYPERBOLIC GEODESICS
    Koskela, Pekka
    Lammi, Paivi
    Manojlovic, Vesna
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2014, 47 (05): : 975 - 990
  • [5] Gromov hyperbolicity of the Hilbert distance
    Fathi Haggui
    Houcine Guermazi
    Annals of Global Analysis and Geometry, 2022, 61 : 235 - 251
  • [6] Gromov hyperbolicity of Denjoy Domains
    Venancio Alvarez
    Ana Portilla
    Jose M. Rodriguez
    Eva Touris
    Geometriae Dedicata, 2006, 121 : 221 - 245
  • [7] Gromov hyperbolicity of the Hilbert distance
    Haggui, Fathi
    Guermazi, Houcine
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 61 (02) : 235 - 251
  • [8] Gromov Hyperbolicity of Riemann Surfaces
    José M.RODRíGUEZ
    EVa TOURIS
    ActaMathematicaSinica(EnglishSeries), 2007, 23 (02) : 209 - 228
  • [9] UNIFORMITY FROM GROMOV HYPERBOLICITY
    Herron, David
    Shanmugalingam, Nageswari
    Xie, Xiangdong
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (04) : 1065 - 1109
  • [10] Gromov Hyperbolicity in Directed Graphs
    Portilla, Ana
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Touris, Eva
    SYMMETRY-BASEL, 2020, 12 (01):