Collective optimization for variational quantum eigensolvers

被引:15
|
作者
Zhang, Dan-Bo [1 ,2 ]
Yin, Tao [3 ]
机构
[1] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, GPETR Ctr Quantum Precis Measurement, SPTE, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Frontier Res Inst Phys, Guangzhou 510006, Peoples R China
[3] Yuntao Quantum Technol, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient methods - Quantum theory - Optimization;
D O I
10.1103/PhysRevA.101.032311
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A variational quantum eigensolver (VQE) optimizes parametrized eigenstates of a Hamiltonian on a quantum processor by updating parameters with a classical computer. Such a hybrid quantum-classical optimization serves as a practical way to leverage classical algorithms in exploiting the power of near-term quantum devices. Here, aiming to solve a group of Hamiltonians more efficiently, we develop an extension of the conventional VQE. A snake algorithm is incorporated to couple optimizing processes for VQEs of different Hamiltonians by gradient descent. Such a so-called collective VQE (CVQE) is applied to simulate molecules with varied bond lengths for demonstration. Numeral simulations show that the CVQE exhibits clear collective behavior in the optimization process of updating parameters. Remarkably, the CVQE tends to avoid a single VQE task to be trapped in the local minimum. The collective optimization utilizes intrinsic relations between related tasks and may inspire advanced hybrid quantum-classical algorithms for solving practical problems with current quantum technologies.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Filtering variational quantum algorithms for combinatorial optimization
    Amaro, David
    Modica, Carlo
    Rosenkranz, Matthias
    Fiorentini, Mattia
    Benedetti, Marcello
    Lubasch, Michael
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (01)
  • [42] Variational quantum algorithm for molecular geometry optimization
    Delgado, Alain
    Arrazola, Juan Miguel
    Jahangiri, Soran
    Niu, Zeyue
    Izaac, Josh
    Roberts, Chase
    Killoran, Nathan
    PHYSICAL REVIEW A, 2021, 104 (05)
  • [43] Improving Variational Quantum Optimization using CVaR
    Barkoutsos, Panagiotis Kl.
    Nannicini, Giacomo
    Robert, Anton
    Tavernelli, Ivano
    Woerner, Stefan
    QUANTUM, 2020, 4
  • [44] Variational quantum gate optimization at the pulse level
    Greenaway, Sean
    Petiziol, Francesco
    Zhao, Hongzheng
    Mintert, Florian
    SCIPOST PHYSICS, 2024, 16 (03):
  • [45] Quantum simulation of excited states from parallel contracted quantum eigensolvers
    Benavides-Riveros, Carlos L.
    Wang, Yuchen
    Warren, Samuel
    Mazziotti, David A.
    NEW JOURNAL OF PHYSICS, 2024, 26 (03):
  • [46] Analytical Energy Gradient for State-Averaged Orbital-Optimized Variational Quantum Eigensolvers and Its Application to a Photochemical Reaction
    Omiya, Keita
    Nakagawa, Yuya O.
    Koh, Sho
    Mizukami, Wataru
    Gao, Qi
    Kobayashi, Takao
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (02) : 741 - 748
  • [47] On Truly Block Eigensolvers via Riemannian Optimization
    Xu, Zhiqiang
    Gao, Xin
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [48] Accelerated Convergence of Contracted Quantum Eigensolvers through a Quasi-Second-Order, Locally Parameterized Optimization
    Smart, Scott E.
    Mazziotti, David A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (09) : 5286 - 5296
  • [49] Noise-Aware Variational Eigensolvers: A Dissipative Route for Lattice Gauge Theories
    Cobos, Jesus
    Locher, David F.
    Bermudez, Alejandro
    Mueller, Markus
    Rico, Enrique
    PRX QUANTUM, 2024, 5 (03):
  • [50] Inverse iteration quantum eigensolvers assisted with a continuous variable
    He, Min-Quan
    Zhang, Dan-Bo
    Wang, Z. D.
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (02)