Improving Variational Quantum Optimization using CVaR

被引:98
|
作者
Barkoutsos, Panagiotis Kl. [1 ]
Nannicini, Giacomo [2 ]
Robert, Anton [1 ,3 ]
Tavernelli, Ivano [1 ]
Woerner, Stefan [1 ]
机构
[1] IBM Res Zurich, Zurich, Switzerland
[2] IBM TJ Watson Res Ctr, Ossining, NY USA
[3] PSL Univ, Ecole Normale Super, Paris, France
来源
QUANTUM | 2020年 / 4卷
关键词
COMPLEXITY;
D O I
10.22331/q-2020-04-20-256
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hybrid quantum/classical variational algorithms can be implemented on noisy intermediate-scale quantum computers and can be used to find solutions for combinatorial optimization problems. Approaches discussed in the literature minimize the expectation of the problem Hamiltonian for a parameterized trial quantum state. The expectation is estimated as the sample mean of a set of measurement outcomes, while the parameters of the trial state are optimized classically. This procedure is fully justified for quantum mechanical observables such as molecular energies. In the case of classical optimization problems, which yield diagonal Hamiltonians, we argue that aggregating the samples in a different way than the expected value is more natural. In this paper we propose the Conditional Value-at-Risk as an aggregation function. We empirically show - using classical simulation as well as quantum hardware - that this leads to faster convergence to better solutions for all combinatorial optimization problems tested in our study. We also provide analytical results to explain the observed difference in performance between different variational algorithms.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Improving the Variational Quantum Eigensolver Using Variational Adiabatic Quantum Computing
    Harwood, Stuart M.
    Trenev, Dimitar
    Stober, Spencer T.
    Barkoutsos, Panagiotis
    Gujarati, Tanvi P.
    Mostame, Sarah
    Greenberg, Donny
    ACM TRANSACTIONS ON QUANTUM COMPUTING, 2022, 3 (01):
  • [2] Improving the Accuracy of Variational Quantum Eigensolvers with Fewer Qubits Using Orbital Optimization
    Bierman, Joel
    Li, Yingzhou
    Lu, Jianfeng
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, : 790 - 798
  • [3] Quantum optimization using variational algorithms on near-term quantum devices
    Moll, Nikolaj
    Barkoutsos, Panagiotis
    Bishop, Lev S.
    Chow, Jerry M.
    Cross, Andrew
    Egger, Daniel J.
    Filipp, Stefan
    Fuhrer, Andreas
    Gambetta, Jay M.
    Ganzhorn, Marc
    Kandala, Abhinav
    Mezzacapo, Antonio
    Mueller, Peter
    Riess, Walter
    Salis, Gian
    Smolin, John
    Tavernelli, Ivano
    Temme, Kristan
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (03):
  • [4] Enhancing quantum approximate optimization with CNN-CVaR integrationEnhancing quantum approximate optimization with CNN-CVaR...P. Cai et al.
    Pengnian Cai
    Kang Shen
    Tao Yang
    Yuanming Hu
    Bin Lv
    Liuhuan Fan
    Zeyu Liu
    Qi Hu
    Shixian Chen
    Yunlai Zhu
    Zuheng Wu
    Yuehua Dai
    Fei Yang
    Jun Wang
    Zuyu Xu
    Quantum Information Processing, 24 (2)
  • [5] Quantum synergy in peptide folding: A comparative study of CVaR-variational quantum eigensolver and molecular dynamics simulation
    Uttarkar, Akshay
    Niranjan, Vidya
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 273
  • [6] Measurement optimization in the variational quantum eigensolver using a minimum clique cover
    Verteletskyi, Vladyslav
    Yen, Tzu-Ching
    Izmaylov, Artur F.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (12):
  • [7] Variational quantum optimization with multibasis encodings
    Patti, Taylor L.
    Kossaifi, Jean
    Anandkumar, Anima
    Yelin, Susanne F.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [8] Collective optimization for variational quantum eigensolvers
    Zhang, Dan-Bo
    Yin, Tao
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [9] The Cost of Improving the Precision of the Variational Quantum Eigensolver for Quantum Chemistry
    Mihalikova, Ivana
    Pivoluska, Matej
    Plesch, Martin
    Friak, Martin
    Nagaj, Daniel
    Sob, Mojmir
    NANOMATERIALS, 2022, 12 (02)
  • [10] Improving the speed of variational quantum algorithms for quantum error correction
    Zoratti, Fabio
    De Palma, Giacomo
    Kiani, Bobak
    Nguyen, Quynh T.
    Marvian, Milad
    Lloyd, Seth
    Giovannetti, Vittorio
    PHYSICAL REVIEW A, 2023, 108 (02)