Collective optimization for variational quantum eigensolvers

被引:15
|
作者
Zhang, Dan-Bo [1 ,2 ]
Yin, Tao [3 ]
机构
[1] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, GPETR Ctr Quantum Precis Measurement, SPTE, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Frontier Res Inst Phys, Guangzhou 510006, Peoples R China
[3] Yuntao Quantum Technol, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient methods - Quantum theory - Optimization;
D O I
10.1103/PhysRevA.101.032311
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A variational quantum eigensolver (VQE) optimizes parametrized eigenstates of a Hamiltonian on a quantum processor by updating parameters with a classical computer. Such a hybrid quantum-classical optimization serves as a practical way to leverage classical algorithms in exploiting the power of near-term quantum devices. Here, aiming to solve a group of Hamiltonians more efficiently, we develop an extension of the conventional VQE. A snake algorithm is incorporated to couple optimizing processes for VQEs of different Hamiltonians by gradient descent. Such a so-called collective VQE (CVQE) is applied to simulate molecules with varied bond lengths for demonstration. Numeral simulations show that the CVQE exhibits clear collective behavior in the optimization process of updating parameters. Remarkably, the CVQE tends to avoid a single VQE task to be trapped in the local minimum. The collective optimization utilizes intrinsic relations between related tasks and may inspire advanced hybrid quantum-classical algorithms for solving practical problems with current quantum technologies.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Variational quantum eigensolvers by variance minimization
    Zhang, Dan-Bo
    Chen, Bin-Lin
    Yuan, Zhan-Hao
    Yin, Tao
    CHINESE PHYSICS B, 2022, 31 (12)
  • [2] Benchmarking Adaptive Variational Quantum Eigensolvers
    Claudino, Daniel
    Wright, Jerimiah
    McCaskey, Alexander J.
    Humble, Travis S.
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [3] Variational quantum eigensolvers by variance minimization
    张旦波
    陈彬琳
    原展豪
    殷涛
    Chinese Physics B, 2022, 31 (12) : 41 - 48
  • [4] Variational Quantum Eigensolvers for Sparse Hamiltonians
    Kirby, William M.
    Love, Peter J.
    PHYSICAL REVIEW LETTERS, 2021, 127 (11)
  • [5] Variational quantum eigensolvers in the era of distributed quantum computers
    Khait, Ilia
    Tham, Edwin
    Segal, Dvira
    Brodutch, Aharon
    PHYSICAL REVIEW A, 2023, 108 (05)
  • [6] Contextuality Test of the Nonclassicality of Variational Quantum Eigensolvers
    Kirby, William M.
    Love, Peter J.
    PHYSICAL REVIEW LETTERS, 2019, 123 (20)
  • [7] Improving the Accuracy of Variational Quantum Eigensolvers with Fewer Qubits Using Orbital Optimization
    Bierman, Joel
    Li, Yingzhou
    Lu, Jianfeng
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, : 790 - 798
  • [8] Physically Motivated Improvements of Variational Quantum Eigensolvers
    Vaquero-Sabater, Nonia
    Carreras, Abel
    Orus, Roman
    Mayhall, Nicholas J.
    Casanova, David
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (12) : 5133 - 5144
  • [9] Parent Hamiltonian as a benchmark problem for variational quantum eigensolvers
    Kobayashi, Fumiyoshi
    Mitarai, Kosuke
    Fujii, Keisuke
    PHYSICAL REVIEW A, 2022, 105 (05)
  • [10] CoolMomentum mitigating local minima in variational quantum eigensolvers
    Tsukayama, Daisuke
    Shirakashi, Jun-ichi
    Imai, Hiroshi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2023, 62 (08)