Collective optimization for variational quantum eigensolvers

被引:15
|
作者
Zhang, Dan-Bo [1 ,2 ]
Yin, Tao [3 ]
机构
[1] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, GPETR Ctr Quantum Precis Measurement, SPTE, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Frontier Res Inst Phys, Guangzhou 510006, Peoples R China
[3] Yuntao Quantum Technol, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient methods - Quantum theory - Optimization;
D O I
10.1103/PhysRevA.101.032311
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A variational quantum eigensolver (VQE) optimizes parametrized eigenstates of a Hamiltonian on a quantum processor by updating parameters with a classical computer. Such a hybrid quantum-classical optimization serves as a practical way to leverage classical algorithms in exploiting the power of near-term quantum devices. Here, aiming to solve a group of Hamiltonians more efficiently, we develop an extension of the conventional VQE. A snake algorithm is incorporated to couple optimizing processes for VQEs of different Hamiltonians by gradient descent. Such a so-called collective VQE (CVQE) is applied to simulate molecules with varied bond lengths for demonstration. Numeral simulations show that the CVQE exhibits clear collective behavior in the optimization process of updating parameters. Remarkably, the CVQE tends to avoid a single VQE task to be trapped in the local minimum. The collective optimization utilizes intrinsic relations between related tasks and may inspire advanced hybrid quantum-classical algorithms for solving practical problems with current quantum technologies.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Mitigating quantum gate errors for variational eigensolvers using hardware-inspired zero-noise extrapolation
    Uvarov, Alexey
    Rabinovich, Daniil
    Lakhmanskaya, Olga
    Lakhmanskiy, Kirill
    Biamonte, Jacob
    Adhikary, Soumik
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [32] Full quantum eigensolvers based on variance
    Li, Ruo-Nan
    Tao, Yuan-Hong
    Liang, Jin-Min
    Wu, Shu-Hui
    Fei, Shao-Ming
    PHYSICA SCRIPTA, 2024, 99 (09)
  • [33] Variational quantum optimization with multibasis encodings
    Patti, Taylor L.
    Kossaifi, Jean
    Anandkumar, Anima
    Yelin, Susanne F.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [34] Variational Quantum Optimization of Nonlocality in Noisy Quantum Networks
    Doolittle B.
    Bromley R.T.
    Killoran N.
    Chitambar E.
    IEEE Transactions on Quantum Engineering, 2023, 4
  • [35] Optimization of the variational quantum eigensolver for quantum chemistry applications
    de Keijzer, R. J. P. T.
    Colussi, V. E.
    Skoric, B.
    Kokkelmans, S. J. J. M. F.
    AVS QUANTUM SCIENCE, 2022, 4 (01):
  • [36] Entanglement-variational hardware-efficient ansatz for eigensolvers
    Wang, Xin
    Qi, Bo
    Wang, Yabo
    Dong, Daoyi
    PHYSICAL REVIEW APPLIED, 2024, 21 (03)
  • [37] Optimizing Variational Quantum Neural Networks Based on Collective Intelligence
    Li, Zitong
    Xiao, Tailong
    Deng, Xiaoyang
    Zeng, Guihua
    Li, Weimin
    MATHEMATICS, 2024, 12 (11)
  • [38] Variational quantum non-orthogonal optimization
    Pablo Bermejo
    Román Orús
    Scientific Reports, 13
  • [39] Variational quantum non-orthogonal optimization
    Bermejo, Pablo
    Orus, Roman
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [40] Unitary block optimization for variational quantum algorithms
    Slattery, Lucas
    Villalonga, Benjamin
    Clark, Bryan K.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):