Filtering variational quantum algorithms for combinatorial optimization

被引:61
|
作者
Amaro, David [1 ]
Modica, Carlo [1 ]
Rosenkranz, Matthias [1 ]
Fiorentini, Mattia [1 ]
Benedetti, Marcello [1 ]
Lubasch, Michael [1 ]
机构
[1] Cambridge Quantum Comp Ltd, London SW1P 1BX, England
关键词
eigensolver; variational quantum algorithm; combinatorial optimization; NISQ devices; hardware-efficient;
D O I
10.1088/2058-9565/ac3e54
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently. To make combinatorial optimization more efficient, we introduce the filtering variational quantum eigensolver which utilizes filtering operators to achieve faster and more reliable convergence to the optimal solution. Additionally we explore the use of causal cones to reduce the number of qubits required on a quantum computer. Using random weighted MaxCut problems, we numerically analyze our methods and show that they perform better than the original VQE algorithm and the quantum approximate optimization algorithm. We also demonstrate the experimental feasibility of our algorithms on a Quantinuum trapped-ion quantum processor powered by Honeywell.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] An introduction to variational quantum algorithms for combinatorial optimization problems
    Camille Grange
    Michael Poss
    Eric Bourreau
    [J]. 4OR, 2023, 21 : 363 - 403
  • [2] An introduction to variational quantum algorithms for combinatorial optimization problems
    Grange, Camille
    Poss, Michael
    Bourreau, Eric
    [J]. ANNALS OF OPERATIONS RESEARCH, 2024,
  • [3] An introduction to variational quantum algorithms for combinatorial optimization problems
    Grange, Camille
    Poss, Michael
    Bourreau, Eric
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2023, 21 (03): : 363 - 403
  • [4] A benchmarking study of quantum algorithms for combinatorial optimization
    Sankar, Krishanu
    Scherer, Artur
    Kako, Satoshi
    Reifenstein, Sam
    Ghadermarzy, Navid
    Krayenhoff, Willem B.
    Inui, Yoshitaka
    Ng, Edwin
    Onodera, Tatsuhiro
    Ronagh, Pooya
    Yamamoto, Yoshihisa
    [J]. NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [5] Combinatorial optimization through variational quantum power method
    Ammar Daskin
    [J]. Quantum Information Processing, 2021, 20
  • [6] Combinatorial optimization with variational approaches on noisy quantum devices
    Miki, Tsukasa
    Okita, Ryo
    Shimada, Moe
    Shirakashi, Jun-ichi
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (3M-NANO), 2021, : 214 - 217
  • [7] Combinatorial optimization through variational quantum power method
    Daskin, Ammar
    [J]. QUANTUM INFORMATION PROCESSING, 2021, 20 (10)
  • [8] Unitary block optimization for variational quantum algorithms
    Slattery, Lucas
    Villalonga, Benjamin
    Clark, Bryan K.
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [9] Parallelization of Classical Numerical Optimization in Quantum Variational Algorithms
    Pistoia, Marco
    Liu, Peng
    Chen, Chun Fu
    Hu, Shaohan
    Wood, Stephen
    [J]. 2020 IEEE 13TH INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VALIDATION AND VERIFICATION (ICST 2020), 2020, : 309 - 320
  • [10] Surrogate-based optimization for variational quantum algorithms
    Shaffer, Ryan
    Kocia, Lucas
    Sarovar, Mohan
    [J]. PHYSICAL REVIEW A, 2023, 107 (03)