Filtering variational quantum algorithms for combinatorial optimization

被引:61
|
作者
Amaro, David [1 ]
Modica, Carlo [1 ]
Rosenkranz, Matthias [1 ]
Fiorentini, Mattia [1 ]
Benedetti, Marcello [1 ]
Lubasch, Michael [1 ]
机构
[1] Cambridge Quantum Comp Ltd, London SW1P 1BX, England
关键词
eigensolver; variational quantum algorithm; combinatorial optimization; NISQ devices; hardware-efficient;
D O I
10.1088/2058-9565/ac3e54
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently. To make combinatorial optimization more efficient, we introduce the filtering variational quantum eigensolver which utilizes filtering operators to achieve faster and more reliable convergence to the optimal solution. Additionally we explore the use of causal cones to reduce the number of qubits required on a quantum computer. Using random weighted MaxCut problems, we numerically analyze our methods and show that they perform better than the original VQE algorithm and the quantum approximate optimization algorithm. We also demonstrate the experimental feasibility of our algorithms on a Quantinuum trapped-ion quantum processor powered by Honeywell.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Quantum variational algorithms are swamped with traps
    Anschuetz, Eric R.
    Kiani, Bobak T.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [42] Measurement reduction in variational quantum algorithms
    Zhao, Andrew
    Tranter, Andrew
    Kirby, William M.
    Ung, Shu Fay
    Miyake, Akimasa
    Love, Peter J.
    [J]. PHYSICAL REVIEW A, 2020, 101 (06)
  • [43] Variational Quantum Algorithms for Semidefinite Programming
    Patel, Dhrumil
    Coles, Patrick J.
    Wilde, Mark M.
    [J]. QUANTUM, 2024, 8
  • [44] Quantum variational algorithms are swamped with traps
    Eric R. Anschuetz
    Bobak T. Kiani
    [J]. Nature Communications, 13
  • [45] Variational quantum algorithms for nonlinear problems
    Lubasch, Michael
    Joo, Jaewoo
    Moinier, Pierre
    Kiffner, Martin
    Jaksch, Dieter
    [J]. PHYSICAL REVIEW A, 2020, 101 (01)
  • [46] Quantum circuit architecture search for variational quantum algorithms
    Yuxuan Du
    Tao Huang
    Shan You
    Min-Hsiu Hsieh
    Dacheng Tao
    [J]. npj Quantum Information, 8
  • [47] EQC: Ensembled Quantum Computing for Variational Quantum Algorithms
    Stein, Samuel
    Wiebe, Nathan
    Ding, Yufei
    Bo, Peng
    Kowalski, Karol
    Baker, Nathan
    Ang, James
    Li, Ang
    [J]. PROCEEDINGS OF THE 2022 THE 49TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA '22), 2022, : 59 - 71
  • [48] Boosting quantum amplitude exponentially in variational quantum algorithms
    Kyaw, Thi Ha
    Soley, Micheline B.
    Allen, Brandon
    Bergold, Paul
    Sun, Chong
    Batista, Victor S.
    Aspuru-Guzik, Alan
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (01)
  • [49] Quantum circuit architecture search for variational quantum algorithms
    Du, Yuxuan
    Huang, Tao
    You, Shan
    Hsieh, Min-Hsiu
    Tao, Dacheng
    [J]. NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [50] Hierarchical Quantum Architecture Search for Variational Quantum Algorithms
    Zhao, Tong
    Chen, Bo
    Wu, Guanting
    Zeng, Liang
    [J]. IEEE Transactions on Quantum Engineering, 2024, 5