Variational quantum algorithms for nonlinear problems

被引:166
|
作者
Lubasch, Michael [1 ]
Joo, Jaewoo [1 ]
Moinier, Pierre [2 ]
Kiffner, Martin [1 ,3 ]
Jaksch, Dieter [1 ,3 ]
机构
[1] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[2] BAE Syst, Computat Engn, Buckingham House,FPC 267,POB 5, Bristol BS34 7QW, Avon, England
[3] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
MATRIX PRODUCT STATES; APPROXIMATION; SYSTEMS; VORTEX;
D O I
10.1103/PhysRevA.101.010301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that nonlinear problems including nonlinear partial differential equations can be efficiently solved by variational quantum computing. We achieve this by utilizing multiple copies of variational quantum states to treat nonlinearities efficiently and by introducing tensor networks as a programming paradigm. The key concepts of the algorithm are demonstrated for the nonlinear Schrodinger equation as a canonical example. We numerically show that the variational quantum ansatz can be exponentially more efficient than matrix product states and present experimental proof-of-principle results obtained on an IBM Q device.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Proximal point algorithms and generalized nonlinear variational problems
    Verma, Ram U.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) : 535 - 543
  • [2] An introduction to variational quantum algorithms for combinatorial optimization problems
    Camille Grange
    Michael Poss
    Eric Bourreau
    [J]. 4OR, 2023, 21 : 363 - 403
  • [3] An introduction to variational quantum algorithms for combinatorial optimization problems
    Grange, Camille
    Poss, Michael
    Bourreau, Eric
    [J]. ANNALS OF OPERATIONS RESEARCH, 2024,
  • [4] An introduction to variational quantum algorithms for combinatorial optimization problems
    Grange, Camille
    Poss, Michael
    Bourreau, Eric
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2023, 21 (03): : 363 - 403
  • [5] Combination of the variational iteration method and numerical algorithms for nonlinear problems
    Wang, Xuechuan
    Xu, Qiuyi
    Atluri, Satya N.
    [J]. APPLIED MATHEMATICAL MODELLING, 2020, 79 : 243 - 259
  • [6] A class of nonlinear proximal point algorithms for variational inequality problems
    He, Hongjin
    Cai, Xingju
    Han, Deren
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (07) : 1385 - 1401
  • [7] Variational quantum algorithms
    Cerezo, M.
    Arrasmith, Andrew
    Babbush, Ryan
    Benjamin, Simon C.
    Endo, Suguru
    Fujii, Keisuke
    McClean, Jarrod R.
    Mitarai, Kosuke
    Yuan, Xiao
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (09) : 625 - 644
  • [8] Variational quantum algorithms
    M. Cerezo
    Andrew Arrasmith
    Ryan Babbush
    Simon C. Benjamin
    Suguru Endo
    Keisuke Fujii
    Jarrod R. McClean
    Kosuke Mitarai
    Xiao Yuan
    Lukasz Cincio
    Patrick J. Coles
    [J]. Nature Reviews Physics, 2021, 3 : 625 - 644
  • [9] Resolvent algorithms for system of generalized nonlinear variational inclusions and fixed point problems
    Balooee J.
    [J]. Afrika Matematika, 2014, 25 (4) : 1023 - 1042
  • [10] Variational methods in nonlinear problems
    Nirenberg, L
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON THE MATHEMATICAL SCIENCES AFTER THE YEAR 2000, 2000, : 116 - 122