Variational quantum algorithms for nonlinear problems

被引:193
|
作者
Lubasch, Michael [1 ]
Joo, Jaewoo [1 ]
Moinier, Pierre [2 ]
Kiffner, Martin [1 ,3 ]
Jaksch, Dieter [1 ,3 ]
机构
[1] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[2] BAE Syst, Computat Engn, Buckingham House,FPC 267,POB 5, Bristol BS34 7QW, Avon, England
[3] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会;
关键词
MATRIX PRODUCT STATES; APPROXIMATION; SYSTEMS; VORTEX;
D O I
10.1103/PhysRevA.101.010301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that nonlinear problems including nonlinear partial differential equations can be efficiently solved by variational quantum computing. We achieve this by utilizing multiple copies of variational quantum states to treat nonlinearities efficiently and by introducing tensor networks as a programming paradigm. The key concepts of the algorithm are demonstrated for the nonlinear Schrodinger equation as a canonical example. We numerically show that the variational quantum ansatz can be exponentially more efficient than matrix product states and present experimental proof-of-principle results obtained on an IBM Q device.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Variational principle for some nonlinear problems
    Tian, Yi
    GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2022, 13 (01)
  • [42] ON ITERATIVE ALGORITHMS FOR A CLASS OF NONLINEAR VARIATIONAL INEQUALITIES
    M. A. Moor
    ApproximationTheoryandItsApplications, 1995, (03) : 95 - 105
  • [43] ON A NEW SYSTEM OF NONLINEAR VARIATIONAL INEQUALITIES AND ALGORITHMS
    Chang, S. S.
    Lee, H. W. Joseph
    Chan, C. K.
    Kim, Jong Kyu
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2009, 11 (01) : 119 - 130
  • [44] Nonlinear variational problems of the elliptic type
    Molle, R
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1998, 1A : 133 - 136
  • [45] Resolvent operator technique and iterative algorithms for system of generalized nonlinear variational inclusions and fixed point problems: Variational convergence with an application
    Balooee, Javad
    Al-Homidan, Suliman
    FILOMAT, 2024, 38 (02) : 669 - 704
  • [46] Gap Functions and Algorithms for Variational Inequality Problems
    Zhang, Congjun
    Liu, Baoqing
    Wei, Jun
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [47] Algorithms for the variational inequalities and fixed point problems
    Liu, Yaqiang
    Yao, Zhangsong
    Liou, Yeong-Cheng
    Zhu, Li-Jun
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 61 - 74
  • [48] Optimizing Multidimensional Pooling for Variational Quantum Algorithms
    Jeng, Mingyoung
    Nobel, Alvir
    Jha, Vinayak
    Levy, David
    Kneidel, Dylan
    Chaudhary, Manu
    Islam, Ishraq
    Baumgartner, Evan
    Vanderhoof, Eade
    Facer, Audrey
    Singh, Manish
    Arshad, Abina
    El-Araby, Esam
    ALGORITHMS, 2024, 17 (02)
  • [49] Variational Quantum Algorithms for Computational Fluid Dynamics
    Jaksch, Dieter
    Givi, Peyman
    Daley, Andrew J.
    Rung, Thomas
    AIAA JOURNAL, 2023, 61 (05) : 1885 - 1894
  • [50] Continuous Variational Quantum Algorithms for Time Series
    Guo, Muhao
    Weng, Yang
    Ye, Lili
    Lai, Ying Cheng
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,