Variational quantum algorithms for nonlinear problems

被引:166
|
作者
Lubasch, Michael [1 ]
Joo, Jaewoo [1 ]
Moinier, Pierre [2 ]
Kiffner, Martin [1 ,3 ]
Jaksch, Dieter [1 ,3 ]
机构
[1] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[2] BAE Syst, Computat Engn, Buckingham House,FPC 267,POB 5, Bristol BS34 7QW, Avon, England
[3] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
MATRIX PRODUCT STATES; APPROXIMATION; SYSTEMS; VORTEX;
D O I
10.1103/PhysRevA.101.010301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that nonlinear problems including nonlinear partial differential equations can be efficiently solved by variational quantum computing. We achieve this by utilizing multiple copies of variational quantum states to treat nonlinearities efficiently and by introducing tensor networks as a programming paradigm. The key concepts of the algorithm are demonstrated for the nonlinear Schrodinger equation as a canonical example. We numerically show that the variational quantum ansatz can be exponentially more efficient than matrix product states and present experimental proof-of-principle results obtained on an IBM Q device.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Resolvent operator technique and iterative algorithms for system of generalized nonlinear variational inclusions and fixed point problems: Variational convergence with an application
    Balooee, Javad
    Al-Homidan, Suliman
    [J]. FILOMAT, 2024, 38 (02) : 669 - 704
  • [42] Gap Functions and Algorithms for Variational Inequality Problems
    Zhang, Congjun
    Liu, Baoqing
    Wei, Jun
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [43] Algorithms for the variational inequalities and fixed point problems
    Liu, Yaqiang
    Yao, Zhangsong
    Liou, Yeong-Cheng
    Zhu, Li-Jun
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 61 - 74
  • [44] Continuous Variational Quantum Algorithms for Time Series
    Guo, Muhao
    Weng, Yang
    Ye, Lili
    Lai, Ying Cheng
    [J]. 2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [45] Variational Quantum Algorithms for Computational Fluid Dynamics
    Jaksch, Dieter
    Givi, Peyman
    Daley, Andrew J.
    Rung, Thomas
    [J]. AIAA JOURNAL, 2023, 61 (05) : 1885 - 1894
  • [46] Optimizing Multidimensional Pooling for Variational Quantum Algorithms
    Jeng, Mingyoung
    Nobel, Alvir
    Jha, Vinayak
    Levy, David
    Kneidel, Dylan
    Chaudhary, Manu
    Islam, Ishraq
    Baumgartner, Evan
    Vanderhoof, Eade
    Facer, Audrey
    Singh, Manish
    Arshad, Abina
    El-Araby, Esam
    [J]. ALGORITHMS, 2024, 17 (02)
  • [47] Evaluating the noise resilience of variational quantum algorithms
    Fontana, Enrico
    Fitzpatrick, Nathan
    Ramo, David Munoz
    Duncan, Ross
    Rungger, Ivan
    [J]. PHYSICAL REVIEW A, 2021, 104 (02)
  • [48] A Distributed Learning Scheme for Variational Quantum Algorithms
    Du Y.
    Qian Y.
    Wu X.
    Tao D.
    [J]. IEEE Transactions on Quantum Engineering, 2022, 3
  • [49] Schrodinger-Heisenberg Variational Quantum Algorithms
    Shang, Zhong-Xia
    Chen, Ming-Cheng
    Yuan, Xiao
    Lu, Chao-Yang
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW LETTERS, 2023, 131 (06)
  • [50] Quantum Variational Algorithms for the Aircraft Deconfliction Problem
    Peeyna, Tomasz
    Kurowski, Krzysztof
    Rozycki, Rafal
    Waligora, Grzegorz
    Weglarz, Jan
    [J]. COMPUTATIONAL SCIENCE, ICCS 2024, PT VI, 2024, 14937 : 307 - 320