Variational quantum algorithms for nonlinear problems

被引:193
|
作者
Lubasch, Michael [1 ]
Joo, Jaewoo [1 ]
Moinier, Pierre [2 ]
Kiffner, Martin [1 ,3 ]
Jaksch, Dieter [1 ,3 ]
机构
[1] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[2] BAE Syst, Computat Engn, Buckingham House,FPC 267,POB 5, Bristol BS34 7QW, Avon, England
[3] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会;
关键词
MATRIX PRODUCT STATES; APPROXIMATION; SYSTEMS; VORTEX;
D O I
10.1103/PhysRevA.101.010301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that nonlinear problems including nonlinear partial differential equations can be efficiently solved by variational quantum computing. We achieve this by utilizing multiple copies of variational quantum states to treat nonlinearities efficiently and by introducing tensor networks as a programming paradigm. The key concepts of the algorithm are demonstrated for the nonlinear Schrodinger equation as a canonical example. We numerically show that the variational quantum ansatz can be exponentially more efficient than matrix product states and present experimental proof-of-principle results obtained on an IBM Q device.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Classically Optimal Variational Quantum Algorithms
    Wurtz J.
    Love P.
    IEEE Transactions on Quantum Engineering, 2021, 2
  • [22] Measurement reduction in variational quantum algorithms
    Zhao, Andrew
    Tranter, Andrew
    Kirby, William M.
    Ung, Shu Fay
    Miyake, Akimasa
    Love, Peter J.
    PHYSICAL REVIEW A, 2020, 101 (06)
  • [23] Quantum variational algorithms are swamped with traps
    Anschuetz, Eric R.
    Kiani, Bobak T.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [24] Fourier expansion in variational quantum algorithms
    Nemkov N.A.
    Kiktenko E.O.
    Fedorov A.K.
    Physical Review A, 2023, 108 (03)
  • [25] Variational Quantum Algorithms for Semidefinite Programming
    Patel, Dhrumil
    Coles, Patrick J.
    Wilde, Mark M.
    QUANTUM, 2024, 8
  • [26] Quantum variational algorithms are swamped with traps
    Eric R. Anschuetz
    Bobak T. Kiani
    Nature Communications, 13
  • [27] Iteration Complexity of Variational Quantum Algorithms
    Kungurtsev, Vyacheslav
    Korpas, Georgios
    Marecek, Jakub
    Zhu, Elton Yechao
    QUANTUM, 2024, 8
  • [28] Boosting quantum amplitude exponentially in variational quantum algorithms
    Kyaw, Thi Ha
    Soley, Micheline B.
    Allen, Brandon
    Bergold, Paul
    Sun, Chong
    Batista, Victor S.
    Aspuru-Guzik, Alan
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (01)
  • [29] Quantum circuit architecture search for variational quantum algorithms
    Yuxuan Du
    Tao Huang
    Shan You
    Min-Hsiu Hsieh
    Dacheng Tao
    npj Quantum Information, 8
  • [30] EQC: Ensembled Quantum Computing for Variational Quantum Algorithms
    Stein, Samuel
    Wiebe, Nathan
    Ding, Yufei
    Bo, Peng
    Kowalski, Karol
    Baker, Nathan
    Ang, James
    Li, Ang
    PROCEEDINGS OF THE 2022 THE 49TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA '22), 2022, : 59 - 71