Topic Regression Multi-Modal Latent Dirichlet Allocation for Image Annotation

被引:108
|
作者
Putthividhya, Duangmanee [1 ]
Attias, Hagai T. [2 ]
Nagarajan, Srikantan S. [3 ]
机构
[1] UCSD, 9500 Gilman Dr, La Jolla, CA 92307 USA
[2] Golden Metall Inc, San Francisco 91147, CA USA
[3] Univ Calif San Francisco, San Francisco, CA 94143 USA
关键词
D O I
10.1109/CVPR.2010.5540000
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present topic-regression multi-modal Latent Dirichlet Allocation (tr-mmLDA), a novel statistical topic model for the task of image and video annotation. At the heart of our new annotation model lies a novel latent variable regression approach to capture correlations between image or video features and annotation texts. Instead of sharing a set of latent topics between the 2 data modalities as in the formulation of correspondence LDA in [2], our approach introduces a regression module to correlate the 2 sets of topics, which captures more general forms of association and allows the number of topics in the 2 data modalities to be different. We demonstrate the power of tr-mmLDA on 2 standard annotation datasets: a 5000-image subset of COREL and a 2687-image LabelMe dataset. The proposed association model shows improved performance over correspondence LDA as measured by caption perplexity.
引用
收藏
页码:3408 / 3415
页数:8
相关论文
共 50 条
  • [21] Class-specific Gaussian-multinomial latent Dirichlet allocation for image annotation
    Zhiming Qian
    Ping Zhong
    Runsheng Wang
    EURASIP Journal on Advances in Signal Processing, 2015
  • [22] Deep Image Annotation and Classification by Fusing Multi-Modal Semantic Topics
    Chen, YongHeng
    Zhang, Fuquan
    Zuo, WanLi
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (01): : 392 - 412
  • [23] Leveraging multi-modal fusion for graph-based image annotation
    Amiri, S. Hamid
    Jamzad, Mansour
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 55 : 816 - 828
  • [24] Topic Modeling Using Latent Dirichlet allocation: A Survey
    Chauhan, Uttam
    Shah, Apurva
    ACM COMPUTING SURVEYS, 2021, 54 (07)
  • [25] A More Effective Method For Image Representation: Topic Model Based on Latent Dirichlet Allocation
    Li, Zongmin
    Tian, Weiwei
    Li, Yante
    Kuang, Zhenzhong
    Liu, Yujie
    2015 14TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS (CAD/GRAPHICS), 2015, : 143 - 148
  • [26] A Hybrid Latent Dirichlet Allocation Approach for Topic Classification
    Hsu, Chi-I
    Chiu, Chaochang
    2017 IEEE INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), 2017, : 312 - 315
  • [27] Semantic latent dirichlet allocation for automatic topic extraction
    Bhutada, Sunil
    Balaram, V. V. S. S. S.
    Bulusu, Vishnu Vardhan
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2016, 37 (03): : 449 - 469
  • [28] Using Latent Dirichlet Allocation for Topic Modelling in Twitter
    Ostrowski, David Alfred
    2015 IEEE 9TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2015, : 493 - 497
  • [29] LATENT TOPIC MODEL FOR IMAGE ANNOTATION BY MODELING TOPIC CORRELATION
    Xu, Xing
    Shimada, Atsushi
    Taniguchi, Rin-ichiro
    2013 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME 2013), 2013,
  • [30] Topic Model Allocation of Conversational Dialogue Records by Latent Dirichlet Allocation
    Yeh, Jui-Feng
    Lee, Chen-Hsien
    Tan, Yi-Shiuan
    Yu, Liang-Chih
    2014 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2014,