A Hybrid Latent Dirichlet Allocation Approach for Topic Classification

被引:0
|
作者
Hsu, Chi-I [1 ]
Chiu, Chaochang [2 ]
机构
[1] Kainan Univ, Informat Management Dept, Taoyuan, Taiwan
[2] Yuan Ze Univ, Informat Management Dept, Taoyuan, Taiwan
关键词
Latent Dirichlet Allocation; Genetic Algorithm; Topic Classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many classification techniques can automatically summarize text into topics and accordingly identify topic terms from the online reviews. Among these techniques Latent Dirichlet Allocation (LDA) and Latent Semantic Analysis (LSA) are some of the most often employed approaches. LDA is a probability generated model that projects a document into the topic space using Dirichlet Distribution, and each topic is a collection of words of the probability distribution. As the LDA extracted topics are often implicit, this study first applies LDA to examine the topics of online reviews for game apps in a supervised way. To improve the topic classification performance for LDA, this study proposes a hybrid LDA approach to use Genetic Algorithm (GA) in discovering optimal weights for LDA topics.
引用
收藏
页码:312 / 315
页数:4
相关论文
共 50 条
  • [1] Topic Selection in Latent Dirichlet Allocation
    Wang, Biao
    Liu, Zelong
    Li, Maozhen
    Liu, Yang
    Qi, Man
    [J]. 2014 11TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2014, : 756 - 760
  • [2] Intelligent radar software defect classification approach based on the latent Dirichlet allocation topic model
    Liu, Xi
    Yin, Yongfeng
    Li, Haifeng
    Chen, Jiabin
    Liu, Chang
    Wang, Shengli
    Yin, Rui
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2021, 2021 (01)
  • [3] Intelligent radar software defect classification approach based on the latent Dirichlet allocation topic model
    Xi Liu
    Yongfeng Yin
    Haifeng Li
    Jiabin Chen
    Chang Liu
    Shengli Wang
    Rui Yin
    [J]. EURASIP Journal on Advances in Signal Processing, 2021
  • [4] Local–class–shared–topic latent Dirichlet allocation based scene classification
    Chao Huang
    Wang Luo
    Yurui Xie
    [J]. Multimedia Tools and Applications, 2017, 76 : 15661 - 15679
  • [5] Topic Extraction and Sentiment Classification by using Latent Dirichlet Markov Allocation and SentiWordNet
    Kaur, Preet Chandan
    Ghorpade, Tushar
    Mane, Vanita
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN INFORMATION COMMUNICATION TECHNOLOGY & COMPUTING, 2016, 2016,
  • [6] Topic Analysis of the Research Domain in Knowledge Organization: A Latent Dirichlet Allocation Approach
    Joo, Soohyung
    Choi, Inkyung
    Choi, Namjoo
    [J]. KNOWLEDGE ORGANIZATION, 2018, 45 (02): : 170 - 183
  • [7] Local-class-shared-topic latent Dirichlet allocation based scene classification
    Huang, Chao
    Luo, Wang
    Xie, Yurui
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (14) : 15661 - 15679
  • [8] Topic Modeling Using Latent Dirichlet allocation: A Survey
    Chauhan, Uttam
    Shah, Apurva
    [J]. ACM COMPUTING SURVEYS, 2021, 54 (07)
  • [9] Semantic latent dirichlet allocation for automatic topic extraction
    Bhutada, Sunil
    Balaram, V. V. S. S. S.
    Bulusu, Vishnu Vardhan
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2016, 37 (03): : 449 - 469
  • [10] Using Latent Dirichlet Allocation for Topic Modelling in Twitter
    Ostrowski, David Alfred
    [J]. 2015 IEEE 9TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2015, : 493 - 497