Topic Regression Multi-Modal Latent Dirichlet Allocation for Image Annotation

被引:108
|
作者
Putthividhya, Duangmanee [1 ]
Attias, Hagai T. [2 ]
Nagarajan, Srikantan S. [3 ]
机构
[1] UCSD, 9500 Gilman Dr, La Jolla, CA 92307 USA
[2] Golden Metall Inc, San Francisco 91147, CA USA
[3] Univ Calif San Francisco, San Francisco, CA 94143 USA
关键词
D O I
10.1109/CVPR.2010.5540000
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present topic-regression multi-modal Latent Dirichlet Allocation (tr-mmLDA), a novel statistical topic model for the task of image and video annotation. At the heart of our new annotation model lies a novel latent variable regression approach to capture correlations between image or video features and annotation texts. Instead of sharing a set of latent topics between the 2 data modalities as in the formulation of correspondence LDA in [2], our approach introduces a regression module to correlate the 2 sets of topics, which captures more general forms of association and allows the number of topics in the 2 data modalities to be different. We demonstrate the power of tr-mmLDA on 2 standard annotation datasets: a 5000-image subset of COREL and a 2687-image LabelMe dataset. The proposed association model shows improved performance over correspondence LDA as measured by caption perplexity.
引用
收藏
页码:3408 / 3415
页数:8
相关论文
共 50 条
  • [41] Context-Aware Latent Dirichlet Allocation for Topic Segmentation
    Li, Wenbo
    Matsukawa, Tetsu
    Saigo, Hiroto
    Suzuki, Einoshin
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT I, 2020, 12084 : 475 - 486
  • [42] Topic Modelling Twitter Data with Latent Dirichlet Allocation Method
    Negara, Edi Surya
    Triadi, Dendi
    Andryani, Ria
    2019 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (ICECOS 2019), 2019, : 386 - 390
  • [43] Constrained Latent Dirichlet Allocation for Subgroup Discovery with Topic Rules
    Li, Rui
    Ahmadi, Zahra
    Kramer, Stefan
    21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 519 - +
  • [44] BiModal Latent Dirichlet Allocation for Text and Image
    Liao, Xiaofeng
    Jiang, Qingshan
    Zhang, Wei
    Zhang, Kai
    2014 4TH IEEE INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2014, : 736 - 739
  • [45] Latent Dirichlet Allocation Models for Image Classification
    Rasiwasia, Nikhil
    Vasconcelos, Nuno
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) : 2665 - 2679
  • [46] Multi-Modal Multi-Scale Deep Learning for Large-Scale Image Annotation
    Niu, Yulei
    Lu, Zhiwu
    Wen, Ji-Rong
    Xiang, Tao
    Chang, Shih-Fu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (04) : 1720 - 1731
  • [47] Multi-modal multi-concept-based deep neural network for automatic image annotation
    Xu, Haijiao
    Huang, Changqin
    Huang, Xiaodi
    Huang, Muxiong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (21) : 30651 - 30675
  • [48] LogisticLDA: Regularizing latent dirichlet allocation by logistic regression
    Guo, Jia-Cheng
    Lu, Bao-Liang
    Li, Zhiwei
    Zhang, Lei
    PACLIC 23 - Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation, 2009, 1 : 160 - 169
  • [49] Multi-modal multi-concept-based deep neural network for automatic image annotation
    Haijiao Xu
    Changqin Huang
    Xiaodi Huang
    Muxiong Huang
    Multimedia Tools and Applications, 2019, 78 : 30651 - 30675
  • [50] Aurora Image Classification Based on Multi-Feature Latent Dirichlet Allocation
    Zhong, Yanfei
    Huang, Rui
    Zhao, Ji
    Zhao, Bei
    Liu, Tingting
    REMOTE SENSING, 2018, 10 (02)