Topic Regression Multi-Modal Latent Dirichlet Allocation for Image Annotation

被引:108
|
作者
Putthividhya, Duangmanee [1 ]
Attias, Hagai T. [2 ]
Nagarajan, Srikantan S. [3 ]
机构
[1] UCSD, 9500 Gilman Dr, La Jolla, CA 92307 USA
[2] Golden Metall Inc, San Francisco 91147, CA USA
[3] Univ Calif San Francisco, San Francisco, CA 94143 USA
关键词
D O I
10.1109/CVPR.2010.5540000
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present topic-regression multi-modal Latent Dirichlet Allocation (tr-mmLDA), a novel statistical topic model for the task of image and video annotation. At the heart of our new annotation model lies a novel latent variable regression approach to capture correlations between image or video features and annotation texts. Instead of sharing a set of latent topics between the 2 data modalities as in the formulation of correspondence LDA in [2], our approach introduces a regression module to correlate the 2 sets of topics, which captures more general forms of association and allows the number of topics in the 2 data modalities to be different. We demonstrate the power of tr-mmLDA on 2 standard annotation datasets: a 5000-image subset of COREL and a 2687-image LabelMe dataset. The proposed association model shows improved performance over correspondence LDA as measured by caption perplexity.
引用
收藏
页码:3408 / 3415
页数:8
相关论文
共 50 条
  • [31] MULTI-MODAL IMAGE REGISTRATION USING FUZZY KERNEL REGRESSION
    Ardizzone, Edoardo
    Gallea, Roberto
    Gambino, Orazio
    Pirrone, Roberto
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 193 - 196
  • [32] Multi-modal kernel ridge regression for social image classification
    Zhang, Xiaoming
    Chao, Wenhan
    Li, Zhoujun
    Liu, Chunyang
    Li, Rui
    APPLIED SOFT COMPUTING, 2018, 67 : 117 - 125
  • [33] Unsupervised symbol emergence for supervised autonomy using multi-modal latent Dirichlet allocations
    Lay, Florian S.
    Bauer, Adrian S.
    Albu-Schaffer, Alin
    Stulp, Freek
    Leidner, Daniel
    ADVANCED ROBOTICS, 2022, 36 (1-2) : 71 - 84
  • [34] Multi-modal image registration using dirichlet-encoded prior information
    Zoellei, Lilla
    Wells, William
    BIOMEDICAL IMAGE REGISTRATION, PROCEEDINGS, 2006, 4057 : 34 - 42
  • [35] Semantic Annotation of Satellite Images Using Latent Dirichlet Allocation
    Lienou, Marie
    Maitre, Henri
    Datcu, Mihai
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (01) : 28 - 32
  • [36] Topic modeling for expert finding using latent Dirichlet allocation
    Momtazi, Saeedeh
    Naumann, Felix
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 3 (05) : 346 - 353
  • [37] Approaches to improve preprocessing for Latent Dirichlet Allocation topic modeling
    Zimmermann, Jamie
    Champagne, Lance E.
    Dickens, John M.
    Hazen, Benjamin T.
    DECISION SUPPORT SYSTEMS, 2024, 185
  • [38] Topic modeling with latent Dirichlet allocation for cancer disease posts
    Altintas, Volkan
    Albayrak, Mehmet
    Topal, Kamil
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2021, 36 (04): : 2183 - 2196
  • [39] An Improved Latent Dirichlet Allocation Model for Hot Topic Extraction
    Liu, Guolong
    Xu, Xiaofei
    Zhu, Ying
    Li, Li
    2014 IEEE FOURTH INTERNATIONAL CONFERENCE ON BIG DATA AND CLOUD COMPUTING (BDCLOUD), 2014, : 470 - 476
  • [40] An Improved Latent Dirichlet Allocation Method for Service Topic Detection
    Guo Lantian
    Li Zhe
    Yang Tao
    Zhang Huixiang
    Mu Dejun
    Li Yang
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 7045 - 7049