Binomial edge ideals of unicyclic graphs

被引:3
|
作者
Sarkar, Rajib [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Binomial edge ideal; depth; extremal Betti number; Castelnuovo-Mumford regularity; COHEN-MACAULAY; REGULARITY; POWERS;
D O I
10.1142/S0218196721500466
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph on the vertex set [n]. Then depth(S/J(G)) <= n + 1. In this paper, we prove that if G is a unicyclic graph, then the depth of S/JG is bounded below by n. Also, we characterize G with depth(S/J(G)) = n and depth(S/J(G)) = n + 1. We then compute one of the distinguished extremal Betti numbers of S/J(G). If G is obtained by attaching whiskers at some vertices of the cycle of length k, then we show that k - 1 <= reg(S/JG) <= k + 1. Furthermore, we characterize G with reg(S/J(G)) = k - 1, reg(S/J(G)) = k and reg(S/J(G)) = k + 1. In each of these cases, we classify the uniqueness of the extremal Betti number of these graphs.
引用
收藏
页码:1293 / 1318
页数:26
相关论文
共 50 条
  • [31] Regularity of the edge ideals of perfect [ν, h]-ary trees and some unicyclic graphs
    Zahra, Fatima Tul
    Ishaq, Muhammad
    Aljohani, Sarah
    [J]. HELIYON, 2024, 10 (10)
  • [32] Hilbert–Poincaré series of parity binomial edge ideals and permanental ideals of complete graphs
    Trong Hoang Do
    Thomas Kahle
    [J]. Collectanea Mathematica, 2021, 72 : 471 - 479
  • [33] Regularity of binomial edge ideals of Cohen-Macaulay bipartite graphs
    Jayanthan, A. V.
    Kumar, Arvind
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (11) : 4797 - 4805
  • [34] Cohen-Macaulay property of binomial edge ideals with girth of graphs
    Saha, Kamalesh
    Sengupta, Indranath
    [J]. JOURNAL OF ALGEBRA, 2024, 658 : 533 - 555
  • [35] Sequentially Cohen-Macaulay binomial edge ideals of closed graphs
    Ene, Viviana
    Rinaldo, Giancarlo
    Terai, Naoki
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (03)
  • [36] COHEN-MACAULAY BINOMIAL EDGE IDEALS OF SOME CLASSES OF GRAPHS
    Lajmiri, Bahareh
    Rahmati, Farhad
    Saeedi, Mahdis
    [J]. JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2019, 42 (01): : 137 - 150
  • [37] Connected domination in graphs and v-numbers of binomial edge ideals
    Jaramillo-Velez, Delio
    Seccia, Lisa
    [J]. COLLECTANEA MATHEMATICA, 2024, 75 (03) : 771 - 793
  • [38] Weakly Closed Graphs and F-Purity of Binomial Edge Ideals
    Matsuda, Kazunori
    [J]. ALGEBRA COLLOQUIUM, 2018, 25 (04) : 567 - 578
  • [39] On the edge multicoloring of unicyclic graphs
    Pyatkin A.V.
    [J]. Journal of Applied and Industrial Mathematics, 2014, 8 (03) : 362 - 365
  • [40] Hilbert-Poincare series of parity binomial edge ideals and permanental ideals of complete graphs
    Do Trong Hoang
    Kahle, Thomas
    [J]. COLLECTANEA MATHEMATICA, 2021, 72 (03) : 471 - 479