Binomial edge ideals of unicyclic graphs

被引:3
|
作者
Sarkar, Rajib [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Binomial edge ideal; depth; extremal Betti number; Castelnuovo-Mumford regularity; COHEN-MACAULAY; REGULARITY; POWERS;
D O I
10.1142/S0218196721500466
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph on the vertex set [n]. Then depth(S/J(G)) <= n + 1. In this paper, we prove that if G is a unicyclic graph, then the depth of S/JG is bounded below by n. Also, we characterize G with depth(S/J(G)) = n and depth(S/J(G)) = n + 1. We then compute one of the distinguished extremal Betti numbers of S/J(G). If G is obtained by attaching whiskers at some vertices of the cycle of length k, then we show that k - 1 <= reg(S/JG) <= k + 1. Furthermore, we characterize G with reg(S/J(G)) = k - 1, reg(S/J(G)) = k and reg(S/J(G)) = k + 1. In each of these cases, we classify the uniqueness of the extremal Betti number of these graphs.
引用
收藏
页码:1293 / 1318
页数:26
相关论文
共 50 条
  • [41] EDGE COLORING LINE GRAPHS OF UNICYCLIC GRAPHS
    CAI, LZ
    ELLIS, JA
    [J]. DISCRETE APPLIED MATHEMATICS, 1992, 36 (01) : 75 - 82
  • [42] Gorenstein binomial edge ideals
    Gonzalez-Martinez, Rene
    [J]. MATHEMATISCHE NACHRICHTEN, 2021, 294 (10) : 1889 - 1898
  • [43] Smoothness in Binomial Edge Ideals
    Damadi, Hamid
    Rahmati, Farhad
    [J]. MATHEMATICS, 2016, 4 (02)
  • [44] Generalized binomial edge ideals
    Rauh, Johannes
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2013, 50 (03) : 409 - 414
  • [45] Parity binomial edge ideals
    Kahle, Thomas
    Sarmiento, Camilo
    Windisch, Tobias
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 44 (01) : 99 - 117
  • [46] Closed binomial edge ideals
    Peeva, Irena
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (803): : 1 - 33
  • [47] On the regularity of binomial edge ideals
    Ene, Viviana
    Zarojanu, Andrei
    [J]. MATHEMATISCHE NACHRICHTEN, 2015, 288 (01) : 19 - 24
  • [48] Parity binomial edge ideals
    Thomas Kahle
    Camilo Sarmiento
    Tobias Windisch
    [J]. Journal of Algebraic Combinatorics, 2016, 44 : 99 - 117
  • [49] Binomial Edge Ideals: A Survey
    Madani, Sara Saeedi
    [J]. MULTIGRADED ALGEBRA AND APPLICATIONS, 2018, 238 : 83 - 94
  • [50] Licci binomial edge ideals
    Ene, Viviana
    Rinaldo, Giancarlo
    Terai, Naoki
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 175