Connected domination in graphs and v-numbers of binomial edge ideals

被引:1
|
作者
Jaramillo-Velez, Delio [1 ]
Seccia, Lisa [2 ]
机构
[1] Ctr Invest & Estudios Avanzados IPN, Dept Matemat, Apartado Postal 14-740, Mexico City 07000, Mexico
[2] Max Planck Inst Math Sci, Leipzig, Germany
关键词
ALGEBRAIC PROPERTIES; BOUNDS; CONSTRUCTION; REGULARITY;
D O I
10.1007/s13348-023-00412-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The v-number of a graded ideal is an algebraic invariant introduced by Cooper et al., and originally motivated by problems in algebraic coding theory. In this paper we study the case of binomial edge ideals and we establish a significant connection between their v-numbers and the concept of connected domination in graphs. More specifically, we prove that the localization of the v-number at one of the minimal primes of the binomial edge ideal J(G) of a graph G coincides with the connected domination number of the defining graph, providing a first algebraic description of the connected domination number. As an immediate corollary, we obtain a sharp combinatorial upper bound for the v-number of binomial edge ideals of graphs. Lastly, building on some known results on edge ideals, we analyse how the v-number of J(G) behaves under Grobner degeneration when G is a closed graph.
引用
收藏
页码:771 / 793
页数:23
相关论文
共 50 条
  • [1] On the extremal Betti numbers of binomial edge ideals of block graphs
    Herzog, Juergen
    Rinaldo, Giancarlo
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01):
  • [2] Binomial edge ideals of graphs
    Madani, Sara Saeedi
    Kiani, Dariush
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [3] On graphs with equal domination and connected domination numbers
    Arumugam, S
    Joseph, JP
    [J]. DISCRETE MATHEMATICS, 1999, 206 (1-3) : 45 - 49
  • [4] Binomial edge ideals of unicyclic graphs
    Sarkar, Rajib
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (07) : 1293 - 1318
  • [5] On the binomial edge ideals of block graphs
    Chaudhry, Faryal
    Dokuyucu, Ahmet
    Irfan, Rida
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (02): : 149 - 158
  • [6] Binomial edge ideals of bipartite graphs
    Bolognini, Davide
    Macchia, Antonio
    Strazzanti, Francesco
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2018, 70 : 1 - 25
  • [7] On the depth of binomial edge ideals of graphs
    Malayeri, M. Rouzbahani
    Madani, S. Saeedi
    Kiani, D.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (03) : 827 - 846
  • [8] On the depth of binomial edge ideals of graphs
    M. Rouzbahani Malayeri
    S. Saeedi Madani
    D. Kiani
    [J]. Journal of Algebraic Combinatorics, 2022, 55 : 827 - 846
  • [9] On edge domination numbers of graphs
    Xu, BG
    [J]. DISCRETE MATHEMATICS, 2005, 294 (03) : 311 - 316
  • [10] CONNECTED DOMINATION SUBDIVISION NUMBERS OF GRAPHS
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    [J]. UTILITAS MATHEMATICA, 2008, 77 : 101 - 111