Hilbert–Poincaré series of parity binomial edge ideals and permanental ideals of complete graphs

被引:0
|
作者
Trong Hoang Do
Thomas Kahle
机构
[1] Hanoi University of Science and Technology,School of Applied Mathematics and Informatics
[2] Otto-von-Guericke Universität,Fakultät für Mathematik
来源
Collectanea Mathematica | 2021年 / 72卷
关键词
Betti numbers; Parity binomial edge ideal; Hilbert–Poincaré series; 05E40; 13P10; 13D02;
D O I
暂无
中图分类号
学科分类号
摘要
We give an explicit formula for the Hilbert–Poincaré series of the parity binomial edge ideal of a complete graph Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{n}$$\end{document} or equivalently for the ideal generated by all 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document}-permanents of a 2×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times n$$\end{document}-matrix. It follows that the depth and Castelnuovo–Mumford regularity of these ideals are independent of n.
引用
收藏
页码:471 / 479
页数:8
相关论文
共 50 条
  • [1] Hilbert-Poincare series of parity binomial edge ideals and permanental ideals of complete graphs
    Do Trong Hoang
    Kahle, Thomas
    [J]. COLLECTANEA MATHEMATICA, 2021, 72 (03) : 471 - 479
  • [2] Hilbert series of binomial edge ideals
    Kumar, Arvind
    Sarkar, Rajib
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (09) : 3830 - 3841
  • [3] BINOMIAL EDGE IDEALS OF COMPLETE MULTIPARTITE GRAPHS
    Ohtani, Masahiro
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (10) : 3858 - 3867
  • [4] Lovasz-Saks-Schrijver ideals and parity binomial edge ideals of graphs
    Kumar, Arvind
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2021, 93
  • [5] Parity binomial edge ideals
    Kahle, Thomas
    Sarmiento, Camilo
    Windisch, Tobias
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 44 (01) : 99 - 117
  • [6] Parity binomial edge ideals
    Thomas Kahle
    Camilo Sarmiento
    Tobias Windisch
    [J]. Journal of Algebraic Combinatorics, 2016, 44 : 99 - 117
  • [7] Binomial edge ideals of graphs
    Madani, Sara Saeedi
    Kiani, Dariush
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [8] REGULARITY OF PARITY BINOMIAL EDGE IDEALS
    Kumar, Arvind
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (07) : 2727 - 2737
  • [9] HILBERT FUNCTION OF BINOMIAL EDGE IDEALS
    Mohammadi, Fatemeh
    Sharifan, Leila
    [J]. COMMUNICATIONS IN ALGEBRA, 2014, 42 (02) : 688 - 703
  • [10] Regularity of Powers of Binomial Edge Ideals of Complete Multipartite Graphs
    Wang, Hong
    Tang, Zhongming
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (03) : 793 - 810