Hilbert–Poincaré series of parity binomial edge ideals and permanental ideals of complete graphs

被引:0
|
作者
Trong Hoang Do
Thomas Kahle
机构
[1] Hanoi University of Science and Technology,School of Applied Mathematics and Informatics
[2] Otto-von-Guericke Universität,Fakultät für Mathematik
来源
Collectanea Mathematica | 2021年 / 72卷
关键词
Betti numbers; Parity binomial edge ideal; Hilbert–Poincaré series; 05E40; 13P10; 13D02;
D O I
暂无
中图分类号
学科分类号
摘要
We give an explicit formula for the Hilbert–Poincaré series of the parity binomial edge ideal of a complete graph Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{n}$$\end{document} or equivalently for the ideal generated by all 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document}-permanents of a 2×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times n$$\end{document}-matrix. It follows that the depth and Castelnuovo–Mumford regularity of these ideals are independent of n.
引用
收藏
页码:471 / 479
页数:8
相关论文
共 50 条
  • [41] Gorenstein binomial edge ideals
    Gonzalez-Martinez, Rene
    [J]. MATHEMATISCHE NACHRICHTEN, 2021, 294 (10) : 1889 - 1898
  • [42] Generalized binomial edge ideals
    Rauh, Johannes
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2013, 50 (03) : 409 - 414
  • [43] Closed binomial edge ideals
    Peeva, Irena
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (803): : 1 - 33
  • [44] Binomial Edge Ideals: A Survey
    Madani, Sara Saeedi
    [J]. MULTIGRADED ALGEBRA AND APPLICATIONS, 2018, 238 : 83 - 94
  • [45] Licci binomial edge ideals
    Ene, Viviana
    Rinaldo, Giancarlo
    Terai, Naoki
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 175
  • [46] On the regularity of binomial edge ideals
    Ene, Viviana
    Zarojanu, Andrei
    [J]. MATHEMATISCHE NACHRICHTEN, 2015, 288 (01) : 19 - 24
  • [47] Almost complete intersection binomial edge ideals and their Rees algebras
    Jayanthan, A., V
    Kumar, Arvind
    Sarkar, Rajib
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (06)
  • [48] SPLITTINGS FOR SYMBOLIC POWERS OF EDGE IDEALS OF COMPLETE GRAPHS
    Cooper, Susan M.
    Da Silva, Sergio
    Gutkin, Max
    Reimer, Tessa
    [J]. JOURNAL OF COMMUTATIVE ALGEBRA, 2024, 16 (02) : 183 - 196
  • [49] Local cohomology of binomial edge ideals and their generic initial ideals
    Josep Àlvarez Montaner
    [J]. Collectanea Mathematica, 2020, 71 : 331 - 348
  • [50] Local cohomology of binomial edge ideals and their generic initial ideals
    Alvarez Montaner, Josep
    [J]. COLLECTANEA MATHEMATICA, 2020, 71 (02) : 331 - 348