Particle swarm optimisation for discrete optimisation problems: a review

被引:88
|
作者
Jordehi, Ahmad Rezaee [1 ]
Jasni, Jasronita [1 ]
机构
[1] Univ Putra Malaysia, Dept Elect Engn, Upm Serdang 43400, Selangor, Malaysia
关键词
Particle swarm optimisation; Optimisation; Discrete environments; DISTRIBUTION-SYSTEMS; NETWORK RECONFIGURATION; PLACEMENT; ALGORITHM; FRAMEWORK; VERSION; POWER;
D O I
10.1007/s10462-012-9373-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many optimisation problems, all or some of decision variables are discrete. Solving such problems are more challenging than those problems with pure continuous variables. Among various optimisation techniques, particle swarm optimisation (PSO) has demonstrated more promising performance in tackling discrete optimisation problems. In PSO, basic variants are merely applicable to continuous problems. So, appropriate strategies should be adopted for enabling them to be applicable to discrete problems. This paper analyses all strategies adopted in PSO for tackling discrete problems and discusses thoroughly about pros and cons of each strategy.
引用
收藏
页码:243 / 258
页数:16
相关论文
共 50 条
  • [41] Particle swarm optimisation: time for uniformisation
    Luis Fernandez-Martinez, Juan
    Garcia-Gonzalo, Esperanza
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2013, 4 (01) : 16 - 33
  • [42] Perceptive particle swarm optimisation: An investigation
    Kaewkamnerdpong, B
    Bentley, PJ
    [J]. 2005 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2005, : 169 - 176
  • [43] Stochastic stability of particle swarm optimisation
    Erskine, Adam
    Joyce, Thomas
    Herrmann, J. Michael
    [J]. SWARM INTELLIGENCE, 2017, 11 (3-4) : 295 - 315
  • [44] An improved particle swarm optimiser based on swarm success rate for global optimisation problems
    Adewumi, Aderemi Oluyinka
    Arasomwan, Akugbe Martins
    [J]. JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2016, 28 (03) : 441 - 483
  • [45] Combining Particle Swarm Optimisation with angle modulation to solve binary problems
    Pampara, G
    Franken, N
    Engelbrecht, AP
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 89 - 96
  • [46] Hybrid firefly particle swarm optimisation algorithm for feature selection problems
    Ragab, Mahmoud
    [J]. EXPERT SYSTEMS, 2024, 41 (07)
  • [47] Improved strategy of particle swarm optimisation algorithm for reactive power optimisation
    Lu, Jin-gui
    Zhang, Li
    Yang, Hong
    Du, Jie
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2010, 2 (01) : 27 - 33
  • [48] Application of Improved Particle Swarm Optimisation Algorithm in Hull form Optimisation
    Zheng, Qiang
    Feng, Bai-Wei
    Liu, Zu-Yuan
    Chang, Hai-Chao
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (09)
  • [49] An improved diversity-guided particle swarm optimisation for numerical optimisation
    Wang, Wenjun
    Wang, Hui
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2014, 5 (01) : 16 - 26
  • [50] AHPSO: Altruistic Heterogeneous Particle Swarm Optimisation Algorithm for Global Optimisation
    Varna, Fevzi Tugrul
    Husbands, Phil
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,