AHPSO: Altruistic Heterogeneous Particle Swarm Optimisation Algorithm for Global Optimisation

被引:2
|
作者
Varna, Fevzi Tugrul [1 ]
Husbands, Phil [1 ]
机构
[1] Univ Sussex, Dept Informat, Brighton, E Sussex, England
关键词
particle swarm optimisation; swarm intelligence;
D O I
10.1109/SSCI50451.2021.9660149
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a new particle swarm optimisation variant: the altruistic heterogeneous particle swarm optimisation algorithm (AHPSO). The algorithm conceptualises particles as energy-driven agents with bio-inspired altruistic behaviour. In our approach, particles possess a current energy level and an activation threshold and are in one of two possible states (active or inactive) depending on their energy levels at time tau. The idea of altruism is used to form lending-borrowing relationships among particles to change an agent's state from inactive to active, and the main search mechanism exploits this idea. Diversity in the swarm, which prevent premature convergence, is maintained via agent states and the level of altruistic behaviour particles exhibit. The performance of AHPSO was compared with 11 metaheuristics and 12 state-of-the-art PSO variants using the CEC'17 and CEC'05 test suites at 30 and 50 dimensions. The AHPSO algorithm outperformed all 23 comparison algorithms on both benchmark test suites at both 30 and 50 dimensions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A Dynamic Neighbourhood Particle Swarm Optimisation Algorithm for Constrained Optimisation
    Li, Lily D.
    Yu, Xinghuo
    Li, Xiaodong
    Guo, William
    [J]. IECON 2011: 37TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2011,
  • [2] A hybrid genetically-bacterial foraging algorithm converged by particle swarm optimisation for global optimisation
    Jain, Tushar
    Nigam, M. J.
    Alavandar, Srinivasan
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2010, 2 (05) : 340 - 348
  • [3] Global Source Optimisation Based on Adaptive Nonlinear Particle Swarm Optimisation Algorithm for Inverse Lithography
    Sun, Haifeng
    Du, Jing
    Jin, Chuan
    Feng, Jinhua
    Wang, Jian
    Hu, Song
    Liu, Junbo
    [J]. IEEE Photonics Journal, 2021, 13 (04)
  • [4] Global Source Optimisation Based on Adaptive Nonlinear Particle Swarm Optimisation Algorithm for Inverse Lithography
    Sun, Haifeng
    Du, Jing
    Jin, Chuan
    Feng, Jinhua
    Wang, Jian
    Hu, Song
    Liu, Junbo
    [J]. IEEE PHOTONICS JOURNAL, 2021, 13 (04):
  • [5] Application of Improved Particle Swarm Optimisation Algorithm in Hull form Optimisation
    Zheng, Qiang
    Feng, Bai-Wei
    Liu, Zu-Yuan
    Chang, Hai-Chao
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (09)
  • [6] Improved strategy of particle swarm optimisation algorithm for reactive power optimisation
    Lu, Jin-gui
    Zhang, Li
    Yang, Hong
    Du, Jie
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2010, 2 (01) : 27 - 33
  • [7] Convergent heterogeneous particle swarm optimisation algorithm for multilevel image thresholding segmentation
    Mozaffari, Mohammad Hamed
    Lee, Won-Sook
    [J]. IET IMAGE PROCESSING, 2017, 11 (08) : 605 - 619
  • [8] Fitness estimation and the particle swarm optimisation algorithm
    Hendtlass, Tim
    [J]. 2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 4266 - 4272
  • [9] Particle swarm optimisation algorithm with forgetting character
    Yuan, Dai-lin
    Chen, Qiu
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2010, 2 (01) : 59 - 64
  • [10] Bacterial foraging optimisation algorithm, particle swarm optimisation and genetic algorithm: a comparative study
    Sadeghiram, Soheila
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2017, 10 (04) : 275 - 282