AHPSO: Altruistic Heterogeneous Particle Swarm Optimisation Algorithm for Global Optimisation

被引:2
|
作者
Varna, Fevzi Tugrul [1 ]
Husbands, Phil [1 ]
机构
[1] Univ Sussex, Dept Informat, Brighton, E Sussex, England
关键词
particle swarm optimisation; swarm intelligence;
D O I
10.1109/SSCI50451.2021.9660149
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a new particle swarm optimisation variant: the altruistic heterogeneous particle swarm optimisation algorithm (AHPSO). The algorithm conceptualises particles as energy-driven agents with bio-inspired altruistic behaviour. In our approach, particles possess a current energy level and an activation threshold and are in one of two possible states (active or inactive) depending on their energy levels at time tau. The idea of altruism is used to form lending-borrowing relationships among particles to change an agent's state from inactive to active, and the main search mechanism exploits this idea. Diversity in the swarm, which prevent premature convergence, is maintained via agent states and the level of altruistic behaviour particles exhibit. The performance of AHPSO was compared with 11 metaheuristics and 12 state-of-the-art PSO variants using the CEC'17 and CEC'05 test suites at 30 and 50 dimensions. The AHPSO algorithm outperformed all 23 comparison algorithms on both benchmark test suites at both 30 and 50 dimensions.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Greedy continuous particle swarm optimisation algorithm for the knapsack problems
    Shen, Xianjun
    Li, Yanan
    Chen, Caixia
    Yang, Jincai
    Zhang, Dabin
    [J]. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 44 (02) : 137 - 144
  • [42] A hybrid cooperative cuckoo search algorithm with particle swarm optimisation
    Wang, Lijin
    Zhong, Yiwen
    Yin, Yilong
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (01) : 18 - 29
  • [43] A New Binary Particle Swarm Optimisation Algorithm for Feature Selection
    Xue, Bing
    Nguyen, Su
    Zhang, Mengjie
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTATION, 2014, 8602 : 501 - 513
  • [44] Application of particle swarm optimisation algorithm in manipulator compliance control
    Guo, Kai
    Bai, Zhi
    Ma, Zhilin
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2023, 18 (02) : 113 - 127
  • [45] Heterogeneous Vector-Evaluated Particle Swarm Optimisation in Static Environments
    Doman, Dieter
    Helbig, Marde
    Engelbrecht, Andries
    [J]. ADVANCES IN SWARM INTELLIGENCE, ICSI 2016, PT I, 2016, 9712 : 293 - 304
  • [46] Particle swarm optimisation strategies for IOL formula constant optimisation
    Langenbucher, Achim
    Szentmary, Nora
    Cayless, Alan
    Wendelstein, Jascha
    Hoffmann, Peter
    [J]. ACTA OPHTHALMOLOGICA, 2023, 101 (07) : 775 - 782
  • [47] On-chip thermal optimisation by whitespace reallocation using a constrained particle-swarm optimisation algorithm
    Chatterjee, D.
    Manikas, T. W.
    [J]. IET CIRCUITS DEVICES & SYSTEMS, 2010, 4 (03) : 251 - 260
  • [48] Parameter Optimisation of Wavelet Denoising for Pulsed Eddy Current Signals Based on Particle Swarm Optimisation Algorithm
    Shao, Qianqiu
    Fan, Songhai
    Liu, Fenglian
    [J]. NONDESTRUCTIVE TESTING AND EVALUATION, 2024, 39 (05) : 1210 - 1224
  • [49] Particle swarm optimisation with spatial particle extension
    Krink, T
    Vesterstrom, JS
    Riget, J
    [J]. CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1474 - 1479
  • [50] A Comparative Study of Genetic Algorithm and Particle Swarm Optimisation for Dendritic Cell Algorithm
    Elisa, Noe
    Yang, Longzhi
    Chao, Fei
    Naik, Nitin
    [J]. 2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,