Improved strategy of particle swarm optimisation algorithm for reactive power optimisation

被引:45
|
作者
Lu, Jin-gui [1 ]
Zhang, Li [1 ]
Yang, Hong [1 ]
Du, Jie [2 ]
机构
[1] Nanjing Univ Technol, Ctr CAD, Nanjing 210009, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Dept Comp, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
reactive power optimisation; RPO; power flow calculation; particle swarm optimisation algorithm; PSO;
D O I
10.1504/IJBIC.2010.030041
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper involves the application of particle swarm optimisation in the optimisation problem of reactive power. The optimisation model of reactive power is first introduced and the improved strategy of particle swarm optimisation is proposed for the problem of optimisation of reactive power in this paper. In order to improve the local search ability, the disturbance item is given for the updating equation of the particle in the improved strategy. The numerical examples of standard IEEE-6 and IEEE-30 power systems for the improved strategy of particle swarm optimisation are performed for the reactive power optimisation. The effectiveness of the improved strategy proposed in this paper has been demonstrated preliminarily from the numerical examples.
引用
收藏
页码:27 / 33
页数:7
相关论文
共 50 条
  • [1] Application of Improved Particle Swarm Optimisation Algorithm in Hull form Optimisation
    Zheng, Qiang
    Feng, Bai-Wei
    Liu, Zu-Yuan
    Chang, Hai-Chao
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (09)
  • [2] Distributed Optimal Reactive Power Dispatch based on Parallel Particle Swarm Optimisation Algorithm
    Li, Y.
    Jiang, L.
    Wu, Q. H.
    Jiang, Q. Y.
    Cao, Y. J.
    [J]. 2008 PROCEEDINGS OF THE 43RD INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE, VOLS 1-3, 2008, : 465 - +
  • [3] An improved multi-objective particle swarm optimisation algorithm
    Fu, Tiaoping
    Shang Ya-Ling
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 12 (1-2) : 66 - 71
  • [4] A Dynamic Neighbourhood Particle Swarm Optimisation Algorithm for Constrained Optimisation
    Li, Lily D.
    Yu, Xinghuo
    Li, Xiaodong
    Guo, William
    [J]. IECON 2011: 37TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2011,
  • [5] Social emotional optimisation algorithm for reactive power optimisation
    [J]. Wei, Zhan-Hong (wwwzhh-85@163.com), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (10):
  • [6] An improved diversity-guided particle swarm optimisation for numerical optimisation
    Wang, Wenjun
    Wang, Hui
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2014, 5 (01) : 16 - 26
  • [7] An optimisation of 3D printing parameters of nanocomposites based on improved particle swarm optimisation algorithm
    Zhang, Jianing
    Yang, Yanhong
    [J]. International Journal of Microstructure and Materials Properties, 2023, 16 (04) : 266 - 277
  • [8] AHPSO: Altruistic Heterogeneous Particle Swarm Optimisation Algorithm for Global Optimisation
    Varna, Fevzi Tugrul
    Husbands, Phil
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [9] Fitness estimation and the particle swarm optimisation algorithm
    Hendtlass, Tim
    [J]. 2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 4266 - 4272
  • [10] Particle swarm optimisation algorithm with forgetting character
    Yuan, Dai-lin
    Chen, Qiu
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2010, 2 (01) : 59 - 64