Particle swarm optimisation algorithm with forgetting character

被引:12
|
作者
Yuan, Dai-lin [1 ,2 ]
Chen, Qiu [1 ]
机构
[1] SW Jiaotong Univ, Sch Mech & Engn, Chengdu 610031, Peoples R China
[2] SW Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
关键词
particle swarm optimisation; PSO; forgetting character; function optimisation; CONVERGENCE;
D O I
10.1504/IJBIC.2010.030045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to improve the performance of particle swarm optimisation algorithm in the complicated function optimisation, a new improved measure was advanced. The new algorithm only memorised the individual information of finite steps in the iterations and utilised the average information of swarm. Due to the individuals forgetting the former best positions, the forgetting character was hold. The ability of exploration was improved because of using forgetting character and average information of swarm. The simulations of complicated function optimisation show that the new algorithm can find the global best solution more easily than the common particle swarm optimisation algorithm.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 50 条
  • [1] A Dynamic Neighbourhood Particle Swarm Optimisation Algorithm for Constrained Optimisation
    Li, Lily D.
    Yu, Xinghuo
    Li, Xiaodong
    Guo, William
    IECON 2011: 37TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2011,
  • [2] Fitness estimation and the particle swarm optimisation algorithm
    Hendtlass, Tim
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 4266 - 4272
  • [3] AHPSO: Altruistic Heterogeneous Particle Swarm Optimisation Algorithm for Global Optimisation
    Varna, Fevzi Tugrul
    Husbands, Phil
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [4] Improved strategy of particle swarm optimisation algorithm for reactive power optimisation
    Lu, Jin-gui
    Zhang, Li
    Yang, Hong
    Du, Jie
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2010, 2 (01) : 27 - 33
  • [5] Application of Improved Particle Swarm Optimisation Algorithm in Hull form Optimisation
    Zheng, Qiang
    Feng, Bai-Wei
    Liu, Zu-Yuan
    Chang, Hai-Chao
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (09)
  • [6] Bacterial foraging optimisation algorithm, particle swarm optimisation and genetic algorithm: a comparative study
    Sadeghiram, Soheila
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2017, 10 (04) : 275 - 282
  • [7] Multi-region particle swarm optimisation algorithm
    Fan J.-S.
    Fan, J.-S. (fjsszw2005@126.com), 2012, Inderscience Publishers (44) : 117 - 123
  • [8] Hybrid particle swarm optimisation algorithm for image segmentation
    Zhang, Jian-de
    Lu, Jin-gui
    Li, Hong-liang
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 14 (04) : 317 - 323
  • [9] Multi-region particle swarm optimisation algorithm
    Fan, Ji-Shan
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 44 (02) : 117 - 123
  • [10] A Synchronous-Asynchronous Particle Swarm Optimisation Algorithm
    Ab Aziz, Nor Azlina
    Mubin, Marizan
    Mohamad, Mohd Saberi
    Ab Aziz, Kamarulzaman
    SCIENTIFIC WORLD JOURNAL, 2014,