Particle swarm optimisation algorithm with forgetting character

被引:12
|
作者
Yuan, Dai-lin [1 ,2 ]
Chen, Qiu [1 ]
机构
[1] SW Jiaotong Univ, Sch Mech & Engn, Chengdu 610031, Peoples R China
[2] SW Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
关键词
particle swarm optimisation; PSO; forgetting character; function optimisation; CONVERGENCE;
D O I
10.1504/IJBIC.2010.030045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to improve the performance of particle swarm optimisation algorithm in the complicated function optimisation, a new improved measure was advanced. The new algorithm only memorised the individual information of finite steps in the iterations and utilised the average information of swarm. Due to the individuals forgetting the former best positions, the forgetting character was hold. The ability of exploration was improved because of using forgetting character and average information of swarm. The simulations of complicated function optimisation show that the new algorithm can find the global best solution more easily than the common particle swarm optimisation algorithm.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 50 条
  • [11] Particle swarm optimisation algorithm for radio frequency identification network topology optimisation
    Zhang, Li
    Lu, Jin-gui
    Chen, Lei
    Zhang, Jian-de
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2011, 6 (1-2) : 16 - 23
  • [12] Scheduling optimisation of flexible manufacturing systems using particle swarm optimisation algorithm
    Jerald, J
    Asokan, P
    Prabaharan, G
    Saravanan, R
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2005, 25 (9-10): : 964 - 971
  • [13] Parameters optimisation of a vehicle suspension system using a particle swarm optimisation algorithm
    Centeno Drehmer, Luis Roberto
    Paucar Casas, Walter Jesus
    Gomes, Herbert Martins
    VEHICLE SYSTEM DYNAMICS, 2015, 53 (04) : 449 - 474
  • [14] Scheduling optimisation of flexible manufacturing systems using particle swarm optimisation algorithm
    J. Jerald
    P. Asokan
    G. Prabaharan
    R. Saravanan
    The International Journal of Advanced Manufacturing Technology, 2005, 25 : 964 - 971
  • [15] A hierarchical particle swarm optimisation algorithm for cloud computing environment
    Ti, Yen-Wu
    Chen, Shang-Kuan
    Wang, Wen-Cheng
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2022, 18 (1-2) : 12 - 26
  • [16] An improved multi-objective particle swarm optimisation algorithm
    Fu, Tiaoping
    Shang Ya-Ling
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 12 (1-2) : 66 - 71
  • [17] Designing a mirrored Howland circuit with a particle swarm optimisation algorithm
    Bertemes-Filho, Pedro
    Negri, Lucas H.
    Vincence, Volney C.
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2016, 103 (06) : 1029 - 1037
  • [18] An evolutionary particle swarm algorithm for multi-objective optimisation
    Chen, Minyou
    Wu, Chuansheng
    Fleming, Peter
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 3269 - +
  • [19] A New Binary Particle Swarm Optimisation Algorithm for Feature Selection
    Xue, Bing
    Nguyen, Su
    Zhang, Mengjie
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, 2014, 8602 : 501 - 513
  • [20] A hybrid cooperative cuckoo search algorithm with particle swarm optimisation
    Wang, Lijin
    Zhong, Yiwen
    Yin, Yilong
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (01) : 18 - 29