Bounds for chromatic number in terms of even-girth and booksize

被引:1
|
作者
Zaker, Manouchehr [1 ]
机构
[1] Inst Adv Studies Basic Sci, Dept Math, Zanjan 4513766731, Iran
关键词
Graph coloring; Chromatic number; Coloring number; Booksize; GRAPHS;
D O I
10.1016/j.disc.2010.10.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The even-girth of any graph G is the smallest length of any even cycle in G. For any two integers t, k with 0 <= t <= k - 2, we denote the maximum number of cycles of length k such that each pair of cycles intersect in exactly a unique path of length t by b(t,k)(G). This parameter is called the (t, k)-booksize of G. In this paper we obtain some upper bounds for the chromatic and coloring numbers of graphs in terms of even-girth and booksize. We also prove some bounds for graphs which contain no cycle of length t where t is a small and fixed even integer. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 204
页数:8
相关论文
共 50 条
  • [31] BOUNDS ON THE MEASURABLE CHROMATIC NUMBER OF RN
    SZEKELY, LA
    WORMALD, NC
    DISCRETE MATHEMATICS, 1989, 75 (1-3) : 343 - 372
  • [32] New bounds for the chromatic number of graphs
    Zaker, Manouchehr
    JOURNAL OF GRAPH THEORY, 2008, 58 (02) : 110 - 122
  • [33] On Lower Bounds for the Chromatic Number of Spheres
    Kostina, O. A.
    MATHEMATICAL NOTES, 2019, 105 (1-2) : 16 - 27
  • [34] Upper bounds of dynamic chromatic number
    Lai, HJ
    Montgomery, B
    Poon, H
    ARS COMBINATORIA, 2003, 68 : 193 - 201
  • [35] On lower bounds for the chromatic number of sphere
    Kostina, O. A.
    Raigorodskii, A. M.
    DOKLADY MATHEMATICS, 2015, 92 (01) : 500 - 502
  • [36] On Lower Bounds for the Chromatic Number of Spheres
    O. A. Kostina
    Mathematical Notes, 2019, 105 : 16 - 27
  • [37] Improved bounds for the chromatic number of a graph
    Hakimi, SL
    Schmeichel, E
    JOURNAL OF GRAPH THEORY, 2004, 47 (03) : 217 - 225
  • [38] On lower bounds for the chromatic number of sphere
    O. A. Kostina
    A. M. Raigorodskii
    Doklady Mathematics, 2015, 92 : 500 - 502
  • [39] Algorithmic bounds on the chromatic number of a graph
    Borowiecki, Piotr
    PROCEEDINGS OF THE 2008 1ST INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, 2008, : 285 - 288
  • [40] A lower bound for the chromatic capacity in terms of the chromatic number of a graph
    Zhou, Bing
    DISCRETE MATHEMATICS, 2013, 313 (20) : 2146 - 2149