Bounds for chromatic number in terms of even-girth and booksize

被引:1
|
作者
Zaker, Manouchehr [1 ]
机构
[1] Inst Adv Studies Basic Sci, Dept Math, Zanjan 4513766731, Iran
关键词
Graph coloring; Chromatic number; Coloring number; Booksize; GRAPHS;
D O I
10.1016/j.disc.2010.10.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The even-girth of any graph G is the smallest length of any even cycle in G. For any two integers t, k with 0 <= t <= k - 2, we denote the maximum number of cycles of length k such that each pair of cycles intersect in exactly a unique path of length t by b(t,k)(G). This parameter is called the (t, k)-booksize of G. In this paper we obtain some upper bounds for the chromatic and coloring numbers of graphs in terms of even-girth and booksize. We also prove some bounds for graphs which contain no cycle of length t where t is a small and fixed even integer. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 204
页数:8
相关论文
共 50 条
  • [21] Lower bounds for the chromatic numbers of distance graphs with large girth
    A. A. Sagdeev
    Mathematical Notes, 2017, 101 : 515 - 528
  • [22] GRAPHS WITH LARGE GIRTH AND CHROMATIC NUMBER ARE HARD FOR NULLSTELLENSATZ
    Romero, Julian
    Tunçel, Levent
    SIAM Journal on Discrete Mathematics, 2024, 38 (03) : 2108 - 2131
  • [23] The chromatic number of a graph of girth 5 on a fixed surface
    Thomassen, C
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 87 (01) : 38 - 71
  • [24] On regular hypergraphs with high girth and high chromatic number
    Khuzieva, Alina E.
    Shabanov, Dmitriy A.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2015, 25 (05): : 277 - 294
  • [25] LIST EDGE CHROMATIC NUMBER OF GRAPHS WITH LARGE GIRTH
    KOSTOCHKA, AV
    DISCRETE MATHEMATICS, 1992, 101 (1-3) : 189 - 201
  • [26] Cycles and new bounds for the chromatic number
    Cordero-Michel, Narda
    Galeana-Sanchez, Hortensia
    Goldfeder, Ilan A.
    DISCRETE MATHEMATICS, 2023, 346 (03)
  • [27] A COMPARISON OF BOUNDS FOR THE CHROMATIC NUMBER OF A GRAPH
    HASELGROVE, J
    SELIM, SM
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1981, 7 (03) : 259 - 260
  • [28] Tight Bounds on the Clique Chromatic Number
    Joret, Gwenael
    Micek, Piotr
    Reed, Bruce
    Smid, Michiel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):
  • [29] BOUNDS FOR THE HARMONIOUS CHROMATIC NUMBER OF A GRAPH
    KRASIKOV, I
    RODITTY, Y
    JOURNAL OF GRAPH THEORY, 1994, 18 (02) : 205 - 209
  • [30] UNIFIED SPECTRAL BOUNDS ON THE CHROMATIC NUMBER
    Elphick, Clive
    Wocjan, Pawel
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (04) : 773 - 780