Bounds for chromatic number in terms of even-girth and booksize

被引:1
|
作者
Zaker, Manouchehr [1 ]
机构
[1] Inst Adv Studies Basic Sci, Dept Math, Zanjan 4513766731, Iran
关键词
Graph coloring; Chromatic number; Coloring number; Booksize; GRAPHS;
D O I
10.1016/j.disc.2010.10.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The even-girth of any graph G is the smallest length of any even cycle in G. For any two integers t, k with 0 <= t <= k - 2, we denote the maximum number of cycles of length k such that each pair of cycles intersect in exactly a unique path of length t by b(t,k)(G). This parameter is called the (t, k)-booksize of G. In this paper we obtain some upper bounds for the chromatic and coloring numbers of graphs in terms of even-girth and booksize. We also prove some bounds for graphs which contain no cycle of length t where t is a small and fixed even integer. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 204
页数:8
相关论文
共 50 条
  • [11] CHROMATIC NUMBER, GIRTH AND MAXIMAL DEGREE
    BOLLOBAS, B
    DISCRETE MATHEMATICS, 1978, 24 (03) : 311 - 314
  • [12] BOUNDS FOR CHROMATIC NUMBER
    WILF, HS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A618 - &
  • [13] Girth and fractional chromatic number of planar graphs
    Pirnazar, A
    Ullman, DH
    JOURNAL OF GRAPH THEORY, 2002, 39 (03) : 201 - 217
  • [14] A note on generalized chromatic number and generalized girth
    Bollobás, B
    West, DB
    DISCRETE MATHEMATICS, 2000, 213 (1-3) : 29 - 34
  • [15] FRACTIONAL CHROMATIC NUMBER, MAXIMUM DEGREE, AND GIRTH
    Pirot, Francois
    Sereni, Jean-Sebastien
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (04) : 2815 - 2843
  • [16] Algorithmic bounds for the chromatic number
    Schiermeyer, Ingo
    OPTIMIZATION, 2008, 57 (01) : 153 - 158
  • [17] Bounds on the Distinguishing Chromatic Number
    Collins, Karen L.
    Hovey, Mark
    Trenk, Ann N.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [18] Improved lower bounds for the orders of even girth cages
    Jajeayova, Tatiana Baginova
    Filipovskit, Slobodan
    Jajcay, Robert
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):
  • [19] Bounds for the smallest k-chromatic graphs of given girth
    Exoo, Geoffrey
    Goedgebeur, Jan
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (03):
  • [20] Lower Bounds for the Chromatic Numbers of Distance Graphs with Large Girth
    Sagdeev, A. A.
    MATHEMATICAL NOTES, 2017, 101 (3-4) : 515 - 528