Bounds on the Distinguishing Chromatic Number

被引:0
|
作者
Collins, Karen L. [1 ]
Hovey, Mark [1 ]
Trenk, Ann N. [2 ]
机构
[1] Wesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA
[2] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2009年 / 16卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Collins and Trenk define the distinguishing chromatic number chi(D)(G) of a graph G to be the minimum number of colors needed to properly color the vertices of G so that the only automorphism of G that preserves colors is the identity. They prove results about chi(D)(G) based on the underlying graph G. In this paper we prove results that relate chi(D)(G) to the automorphism group of G. We prove two upper bounds for chi(D)(G) in terms of the chromatic number chi(G) and show that each result is tight : (1) if Aut (G) is any finite group of order p(1)(i1)p(2)(i2) ... p(k)(ik) chi(D)(G) <= chi(G) + i(1) + i(2) ...+ i(k), and (2) if Aut(G)isafinite and abelian group written Aut(G) = Z(p1i1) x ... x Z(pkik) then we get the improved bound chi(D)(G) <= chi(G) + k. In addition, we characterize automorphism groups of graphs wit h chi(D)(G) = 2 and discuss similar results for graphs with chi(D)(G) = 3.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Upper Bounds for the List-Distinguishing Chromatic Number
    Amitayu Banerjee
    Zalán Molnár
    Alexa Gopaulsingh
    Graphs and Combinatorics, 2025, 41 (3)
  • [2] The Distinguishing Number and Distinguishing Chromatic Number for Posets
    Collins, Karen L.
    Trenk, Ann N.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2022, 39 (03): : 361 - 380
  • [3] The Distinguishing Number and Distinguishing Chromatic Number for Posets
    Karen L. Collins
    Ann N. Trenk
    Order, 2022, 39 : 361 - 380
  • [5] Upper bounds on adjacent vertex distinguishing total chromatic number of graphs
    Hu, Xiaolan
    Zhang, Yunqing
    Miao, Zhengke
    DISCRETE APPLIED MATHEMATICS, 2017, 233 : 29 - 32
  • [6] The distinguishing chromatic number
    Collins, KL
    Trenk, AN
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [7] BOUNDS FOR CHROMATIC NUMBER
    WILF, HS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A618 - &
  • [8] Equitable distinguishing chromatic number
    Amouzegar, Tayyebeh
    Khashyarmanesh, Kazem
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (02): : 304 - 315
  • [9] On the local distinguishing chromatic number
    Khormali, Omid
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (02) : 172 - 181
  • [10] Equitable distinguishing chromatic number
    Tayyebeh Amouzegar
    Kazem Khashyarmanesh
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 304 - 315