Penalized robust estimators in sparse logistic regression

被引:4
|
作者
Bianco, Ana M. [1 ,2 ]
Boente, Graciela [3 ,4 ]
Chebi, Gonzalo [3 ,4 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[4] Consejo Nacl Invest Cient & Tecn, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
关键词
Logistic regression; Outliers; Penalty functions; Robust estimation; Sparse models; VARIABLE SELECTION; LIKELIHOOD; INFERENCE; LASSO;
D O I
10.1007/s11749-021-00792-w
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sparse covariates are frequent in classification and regression problems where the task of variable selection is usually of interest. As it is well known, sparse statistical models correspond to situations where there are only a small number of nonzero parameters, and for that reason, they are much easier to interpret than dense ones. In this paper, we focus on the logistic regression model and our aim is to address robust and penalized estimation for the regression parameter. We introduce a family of penalized weighted M-type estimators for the logistic regression parameter that are stable against atypical data. We explore different penalization functions including the so-called Sign penalty. We provide a careful analysis of the estimators convergence rates as well as their variable selection capability and asymptotic distribution for fixed and random penalties. A robust cross-validation criterion is also proposed. Through a numerical study, we compare the finite sample performance of the classical and robust penalized estimators, under different contamination scenarios. The analysis of real datasets enables to investigate the stability of the penalized estimators in the presence of outliers.
引用
收藏
页码:563 / 594
页数:32
相关论文
共 50 条
  • [1] Penalized robust estimators in sparse logistic regression
    Ana M. Bianco
    Graciela Boente
    Gonzalo Chebi
    [J]. TEST, 2022, 31 : 563 - 594
  • [2] Robust penalized estimators for functional linear regression
    Kalogridis, Ioannis
    Van Aelst, Stefan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 194
  • [3] Robust and sparse logistic regression
    Cornilly, Dries
    Tubex, Lise
    Van Aelst, Stefan
    Verdonck, Tim
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (03) : 663 - 679
  • [4] Robust penalized logistic regression with truncated loss functions
    Park, Seo Young
    Liu, Yufeng
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (02): : 300 - 323
  • [5] Penalized principal logistic regression for sparse sufficient dimension reduction
    Shin, Seung Jun
    Artemiou, Andreas
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 111 : 48 - 58
  • [6] Robust and sparse estimators for linear regression models
    Smucler, Ezequiel
    Yohai, Victor J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 111 : 116 - 130
  • [7] Robust Estimators in Logistic Regression: A Comparative Simulation Study
    Ahmad, Sanizah
    Ramli, Norazan Mohamed
    Midi, Habshah
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2010, 9 (02) : 502 - 511
  • [8] Inferential tools in penalized logistic regression for small and sparse data: A comparative study
    Siino, Marianna
    Fasola, Salvatore
    Muggeo, Vito M. R.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (05) : 1365 - 1375
  • [9] The Performance of Classical and Robust Logistic Regression Estimators in the Presence of Outliers
    Habshah, M.
    Syaiba, B. A.
    [J]. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2012, 20 (02): : 313 - 325
  • [10] The influence function of penalized regression estimators
    Ollerer, Viktoria
    Croux, Christophe
    Alfons, Andreas
    [J]. STATISTICS, 2015, 49 (04) : 741 - 765